Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes: what they are and why they are so important

01.08.2003


Introduction - Enzymology in 2003



Why the 90th anniversary of v = Vmax x [S] / (Km + [S]) is as important as the 50th anniversary of the double-helical structure of DNA. Enzymology is essential, to find out how nucleic acids fulfil their biological functions. Moreover, genome analysis will always, at some stage in the process, have to advance from sequence gazing to enzymology, since the objective of the analysis must be to identify the reactions mediated by the products of each open reading frame. "Enzymology is thus central to nucleic acid and genomic biochemistry," says author Stephen Halford.

Contact: Stephen Halford, Department of Biochemistry, University of Bristol, Bristol BS8 1TD; tel: +44 (0)117-928-7429; e-mail: s.halford@bristol.ac.uk


Ancient enzymology?

How did life start to reproduce? In this article David Lilley looks at the mysteries of the RNA world, the time before DNA. "There is a significant chicken-and-egg problem that bedevils imagining how life could have developed on the planet from some kind of primeval soup," says the author. "All contemporary life uses nucleic acids as the genetic repository and proteins as the chemical workhorse." Taking the remarkable discovery some 20 years ago that RNA could behave like an enzyme he demonstrates how it could have happened, and explains why the connection between ribozymes and ribosomes is far more than typographical.

Contact: David M. J. Lilley, Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH; tel.: +44 (0)1382-344243; e-mail: d.m.j.lilley@dundee.ac.uk

Directed evolution

One of the ultimate goals of protein engineers has been to acquire the knowledge to design and build proteins for any given function - for example to produce "tailor-made" enzymes for any given reaction. This has usually been done by modifying an existing protein with a similar function. Although this has resulted in some notable successes, more often it has highlighted our relatively poor understanding of the intricacies of enzyme recognition and catalysis. Here, authors Gavin Williams and Alan Berry describe how they developed an alternative: directed evolution.

Contact: Alan Berry, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT; tel.: +44 (0)113 343 3158; e-mail: A.Berry@leeds.ac.uk

Integral Membrane Enzymes

The design of ’’real’’ integral membrane enzymes must be difficult, because nature uses enzymes of this type only when it really has to. But difficult is not the same as impossible. Anthony Lee looks at the problems and the solutions.

Contact: Anthony Lee, Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX; tel.: +44 (0)23 8059 4331; e-mail: agl@soton.ac.uk

Power versus control

More than a third of all enzymes catalyse the oxidation or reduction of a substrate yet the often complex, redox chemistry involved is made possible by surprisingly few cofactors. Stephen Chapman, Simon Daff and Tobias W. B. Ost look at the reasons why.

Contact: Stephen Chapman, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ; tel.: +44 (0)131 650 4760; e-mail: S.K.Chapman@ed.ac.uk

Single molecule enzymology

We can now measure enzyme activity at the level of a single enzyme molecule. This is technically impressive, but what can it really tell us? Here, Clive R. Bagshaw reviews the basic principles to show that new forms of heterogeneity in activity may be revealed and evidence gained for rare states that would otherwise be swamped in bulk assays.

Contact: Clive Bagshaw, Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH; tel.: +44 (0)116 252 3454; e-mail: crb5@le.ac.uk

Product focus: Automated image analysis

Paul Ellwood from Syngene looks at how automated image analysis can improve accuracy and increase productivity in drug discovery.

Contact: Paul Ellwood, Beacon House, Nuffield Road, Cambridge, CB4 1TF; tel: +44 (0) 1223-727123; e-mail: paul.ellwood@syngene.com

Mark Burgess | alfa
Further information:
http://www.biochemist.org

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Heading towards a tsunami of light

19.03.2019 | Physics and Astronomy

Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry

19.03.2019 | Life Sciences

From foam to bone: Plant cellulose can pave the way for healthy bone implants

19.03.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>