Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell death gives clue to brain cell survival

01.08.2003


A signal that triggers half the stem cells in the developing brain to commit suicide at a stage where their survival will likely do more harm than good has been identified by researchers at the Medical College of Georgia and the University of Georgia.



Identifying the factors that result in the timely, massive cell suicide is important to understanding the developmental puzzle, the researchers say of the work featured on the cover of the Aug. 4 issue of the Journal of Cell Biology.

They say it also gives clues about cell death - and the brain´s possible recovery - in devastating diseases such as Alzheimer´s, Parkinson´s and stroke. MCG´s Erhard Bieberich and UGA´s Brian G. Condie have found that the lipid ceramide and the protein PAR-4 - each already implicated for playing a role in cell death - become deadly partners inside a dividing stem cell in the developing mouse brain.


"If PAR-4 is there and ceramide is high, the cell is lost, doomed to die," says Dr. Bieberich, biochemist at the Medical College of Georgia. "You can eliminate one of them, you can knock down the expression of PAR-4 or ceramide and the other stays up but the cell doesn´t die. But if both signals are together up-regulated, then the cell is destined to die."

At a certain point in cell division, just before neurons begin forming, there is massive production of proteins and up-regulation of lipids. During that phase, decisions are made about which daughter cells get what composition of lipids and proteins, decisions that affect the cells´ future function.

Typically at this point in division, the two daughter cells birthed from a single stem cell will have the same makeup and the same ultimate purpose.

Yet in a subpopulation of the stem cells involved in brain development, the scientists have documented increasing levels of ceramide in both resulting daughter cells while its death partner, PAR-4, gets handed off to only half the cells.

Cells destined to survive, and likely further divide and differentiate, are handed instead a protein called nestin. "Nestin is a marker for a particular stage of neuronal development," says Dr. Bieberich. "Nestin-bearing cells will develop into neural cells such as our neurons or astrocytes or other cells. So it makes sense that the cells that inherit nestin, but not PAR-4, will survive and develop into normal neuronal cells whereas the other ones will die."

It also makes sense that the lethal coupling that signals cell suicide, or apoptosis, comes at a point where the doomed cells seem to have lost their potential usefulness and where their continued survival would result in a malformed brain.

"During normal development in the central nervous system there is a great deal of cell death that occurs that seems to be required to create the final shape and structure of the brain," says Dr. Condie, developmental neurobiologist at the University of Georgia and MCG. "In cases where that process has been interfered with, you end up with this excess of cells that leads to a malformation of the developing brain.

"One of the ideas behind why there is an excess of cells generated during development is that it may be a mechanism for compensating for environmental stresses or other types of stresses that an embryo may encounter during development," says Dr. Condie. "So you actually generate an excess of the cells you need and then prune those cells back to an appropriate number and location for the brain to develop in a normal fashion." It´s a typical characteristic of embryonic development for certain cells to survive and others to die, he says.

"During embryonic development, we would like to know how stem cell death is regulated because we know it needs to be regulated," says Dr. Bieberich. "You don´t want the whole brain dying or overgrowing. You have to find a balance. How is that balanced maintained? What are the secrets for that?

"We have designed experiments showing that these two signals are necessary to make stem cells die, but you are talking about a whole signaling cascade that starts out with ceramide and PAR-4 and then there are a lot of unknown steps until we end up with the actual death of a cell," says Dr. Bieberich.

The MCG researcher recently received a grant from the National Institutes of Health so he and Dr. Condie can explore these unknowns such as how the expression of PAR-4 and ceramide is regulated, what accounts for the asymmetrical distribution of PAR-4 and just how the deadly duo interact.

But the two are excited about what they have found already. "If we don´t know the signals, we don´t know where to begin," says Dr. Bieberich.

They also are intrigued by where the work may lead, including helping minimize cell death that occurs when stem cells in the adult brain begin to once again divide in response to a stroke, as an example.

"We all know that even in adulthood, we have stem cells in the brain and they may be able to repair damaged areas," says Dr. Bieberich. "But if the same cell death mechanisms are still active, there will not be an increase in the number of stem cells because always one cell will die and one will survive. Maybe we can control this and increase the number of endogenous stem cells.

"Also during the neurodegeneration that occurs in diseases such as Alzheimer´s and Parkinson´s, we have a lot of cell death going on and we would like to know what signals are involved that make those brain cells die. They may be very similar or even exactly the same as the ones we investigate with our embryonic mouse stem cells."

Study co-authors include Scott Noggle, an MCG graduate student working with Dr. Condie at UGA; Sarah MacKinnon, a former participant in MCG´s summer research programs for undergraduates who is now a graduate student at the University of Virginia; and Dr. Jeane Silva, Dr. Bieberich´s research coordinator.

Contact: Phil Williams, (+1) 706-542-8501

Phil Williams | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>