Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory scientists contribute to study of key regulatory protein in neurodegeneration

31.07.2003


A multi-institutional team of scientists has gained important new knowledge about the regulatory role played in Alzheimer’s disease by Pin1, a protein that coaxes other proteins into untwisting. The research is published in the July 31 issue of Nature.

The team of researchers, including a group from the Department of Human Genetics at Emory University School of Medicine, examined slices of brain and found an inverse relationship between the abundance of Pin1 and both the susceptibility of neurons to degenerative damage and the amount of protein tangles. They also found that mice with an artificial disruption of Pin1 develop a neurodegenerative disease that resembles Alzheimer’s.

Lead authors are Drs. Yih-cherng Liou, Anyang Sun, and Kun Ping Lu from Harvard Medical School. Xiaojiang Li, PhD and Zhao-Xue Yu, PhD from Emory School of Medicine studied the degeneration in the brains of Pin1-deficient mice using electron microscopy and immunogold staining. Scientists from the University of Kentucky, the Salk Institute, and Tufts University also contributed to the study.


Scientists studying Alzheimer’s disease and other neurodegenerative diseases resemble detectives poring over a crime scene in a mystery novel. They have identified a couple of suspicious individuals––proteins that form disruptive tangles and knots in the brain. The detectives can piece together how the crime was committed, but they still have questions about some characters standing in the shadows. They want to know not only how, but why.

In Alzheimer’s disease, amyloid precursor protein (APP) and tau form aggregated tangles in the brain: APP outside and between cells, tau within the neurons. "It is clear that both proteins play a role in the Alzheimer’s disease mechanism, but there is some disagreement about which one is more important," says Dr. Li.

Pin1, part of a class of enzymes called prolyl isomerases, is known to regulate many proteins critical for cell division. Pin1 twists the joints of proteins in specific creaky places, allowing them to change shape. However, it previously was unclear whether Pin1 helped to promote or prevent tangles. Dr. Lu’s laboratory at Harvard had the opportunity to examine the situation in the living brain using Pin1-deficient mice. They had previously found that Pin1 is necessary for proper development of the retina and mammary glands.

Dr. Li’s group joined the effort to analyze the Pin1-deficient brains in a way that was complementary to the biochemical methods used by the Harvard group. They found that the Pin-1-negative mice had degenerating neurons similar to those in Alzheimer’s disease. Dr. Li says it is also important to investigate the connection between Pin1 and APP, which clogs up the brain outside the neurons in Alzheimer’s disease. "The access of many enzymes to tau and APP could be regulated by Pin1," he says. "And Pin1 regulates many proteins, not just tau and APP. This research is really at the crossroads." Dr. Li hypothesizes that Pin1 loss of function could contribute to other neurodegenerative diseases like Parkinson’s and Huntington disease.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>