Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein: Getting to the Meat of this essential Element

31.07.2003


Living organisms operate with a variety of tens of thousands of protein structures and, though much research has been done on individual protein systems, little is understood about how different protein systems interact. Now an effort at Texas A&M University is bringing together all known information in an extensive, searchable internet site called Binding Interface Database.



"No one understands the rules of protein interaction," said Dr. Jerry Tsai, Texas Agricultural Experiment Station bioinformatics researcher. "So we are bringing all that is known together in one place."

After one year, the Binding Interface Database, has 245 interacting protein pairs with more than 1,500 "hot spots," or key interaction areas, documented.


"It’s like moving a sitting elephant," Tsai said. "It’s enormous. We spent about nine months just planning how it would be done." Tsai’s research is what scientists have dubbed "bioinformatics." That is, information technology applied to biology – software programs that process information derived from biological systems such as DNA sequence, cell images and protein crystal structures. "A researcher can come to the site, look at a protein or related protein and get a clue to what proteins relate," said Tiffany Fischer of Dallas, a doctoral biochemistry student who is managing the project with Tsai.

Tsai said others have attempted to create a protein binding database before but never in easy-to-maneuver format with searchable data. That’s where Fischer, whose bachelor’s degree is in genetics, lends expertise. She oversees a team of students who glean research papers for the useful and accurate information to enter into the database.

Fischer said the team is targeting the most biologically significant, widely researched proteins and systems initially. "The MAPK system, for example, is important because it is a proposed cancer-causing pathway associated with cell death and cell proliferation," she said. "That has been widely documented, so by putting what is known in the database, a researcher can come to one place to find out all that is known about the interactions of this system."

Still, less than 500 structures of proteins that interact are known, she added, though there are about 20,000 in protein structure database. One can search the system by protein or by system to get complete descriptions of proteins and their interactions. Also included is reference information that points to the source of the information.

Adding to what’s already in the database, Tsai said, the project now will focus on inputting information on adaptor/adapter/adaptin proteins, and apoptosis (programmed cell death such as when the tissue between fingers of a fetus goes away) and tumor suppressors.

Contact: Dr. Jerry Tsai, +1-979-458-3377, jerrytsai@tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://tsailab.tamu.edu/BID
http://www.tamu.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>