Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell "suicide" enzymes are a missing link in Alzheimer’s disease

29.07.2003


Northwestern University researchers have found that caspases, a family of protein-cutting enzymes involved in programmed cell death (apoptosis), may be a missing link in the chain of molecular events leading to Alzheimer´s disease.
Alzheimer´s disease is a neurodegenerative condition affecting an estimated 4 million Americans that causes memory loss and, ultimately, dementia. Patients with this disease have abnormal deposits (plaques) of protein fragments called amyloid-beta surrounding neurons in their brain and "tangles" of a protein called tau inside brain cells.

For years, scientists have been debating which of these two events – plaques or tangles – is the primary cause of Alzheimer´s disease. Recent studies have suggested that amyloid promotes the assembly of tau into tangles, but, until now, the actual mechanism by which this occurs was poorly understood.


In an article appearing in the online version of the Proceedings of the National Academy of Sciences, co-senior authors Lester I. Binder and Vincent L. Cryns of the Feinberg School of Medicine at Northwestern University report that caspases may provide a direct link between amyloid and tangles.

Because caspases were known to be activated in dying neurons in Alzheimer´s disease and to cut (cleave) tau under some circumstances, Binder and Cryns reasoned that caspases might be responsible for cleaving tau into smaller or truncated forms that are often observed in tangles.

In a collaboration between their two labs, the scientists demonstrated that exposing neurons to amyloid-beta activates caspases, which then cleave tau at a specific site (Asp421) in the tail end of the molecule. They then showed that this truncated form of tau was much more prone to forming abnormal filaments that resemble tangles, suggesting that amyloid exposure might promote tangle formation through the action of caspases on tau.

To provide additional evidence of the relevance of their findings to Alzheimer´s disease, Binder and Cryns also created a monoclonal antibody that specifically recognizes the truncated form of tau produced by caspases. With this antibody, they demonstrated that tau is commonly cleaved at this site in the tangles in Alzheimer´s disease, indicating that caspase cleavage of tau may play a role in tangle formation in this disease.

By suggesting a new link between the two major brain abnormalities in Alzheimer´s disease, Binder and Cryns hope their work will "provide a common ground between the amyloid and tau proponents and point to the need to consider both of these interrelated pathological events in future studies and therapies."

Indeed, in ongoing studies in their laboratories, they hope to establish the timing of tau cleavage in Alzheimer´s disease brains relative to other molecular events and to determine what role, if any, caspase cleavage of tau has in neuronal cell death.

Binder is professor of cell and molecular biology and a researcher at the Cognitive Neurology and Alzheimer´s Disease Center at the Feinberg School. Cryns is assistant professor of medicine and director of the Cell Death Regulation Laboratory in the department of medicine at the Feinberg School. Their co-researchers on this study include: T. Chris Gamblin; Feng Chen; Angara Zambrano; Aida Abraha; Sarita Lagalwar; Angela L. Guillozet; Meling Lu; Yifan Fu; Francisco Garcia-Sierra; Nichole LaPointe; Richard Miller; and Robert W. Berry, professor of cell and molecular biology.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht 3D technology lets us look into the distant past
20.05.2019 | Eberhard Karls Universität Tübingen

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>