Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice´s chemical "scissors" yield short carbon nanotubes

23.07.2003


Chemists at Rice University have identified a chemical process for cutting carbon nanotubes into short segments. The new process yields nanotubes that are suitable for a variety of applications, including biomedical sensors small enough to migrate through cells without triggering immune reactions.

The chemical cutting process involves fluorinating the nanotubes, essentially attaching thousands of fluorine atoms to their sides, and then heating the fluoronanotubes to about 1,000 Celsius in an argon atmosphere. During the heating, the fluorine is driven off and the nanotubes are cut into segments ranging in length from 20-300 nanometers.

"We have studied several forms of chemical "scissors", including other fluorination methods and processes that involve ozonization of nanotubes," said John Margrave, the E.D. Butcher Professor of Chemistry at Rice University. "With most methods, we see a random distribution among the lengths of the cut tubes, but pyrolytic fluorination results in a more predictable distribution of lengths."



By varying the ratio of fluorine to carbon, Margrave and recent doctoral graduate Zhenning Gu can increase or decrease the proportion of cut nanotubes of particular lengths. For example, some fluorine ratios result in nearly 40 percent of cut nanotubes that are 20 nanometers in length. That´s smaller than many large proteins in the bloodstream, so tubes of that length could find uses as biomedical sensors. By varying the process, Margrave hopes to maximize the production of lengths of nanotubes that are useful in molecular electronics, polymer composites, catalysis and other applications.

Carbon nanotubes are a type of fullerene, a form of carbon that is distinct from graphite and diamond. When created, they contain an array of carbon atoms in a long, hollow cylinder that measures approximately one nanometer in diameter and several thousand nanometers in length. A nanometer is one billionth of a meter, or about 100,000 times smaller than a human hair.

Since discovering them more than a decade ago, scientists have been exploring possible uses for carbon nanotubes, which exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, and as much as 100 times the strength of steel at one-sixth the weight. In order to capitalize on these properties, researchers and engineers need a set of tools -- in this case, chemical processes like pyrolytic fluorination -- that will allow them to cut, sort, dissolve and otherwise manipulate nanotubes.

Margrave said his team is already at work finding a method to sort the cut tubes by size. One technique they are studying is chromatography, a complex form of filtering. Margrave hopes to re-fluorinate the cut tubes, mix them with a solvent and pour the mixture through a column of fine powder that will trap the shorter nanotubes. Another sorting method under study is electrophoresis, which involves the application of an electric field to a solution.

Margrave´s group is researching other ways that fluorination can be used to manipulate carbon nanotubes, which are chemically stable in their pure form. The highly-reactive fluorine atoms, which are attached to the walls of the nanotubes, allow scientists to create subsequent chemical reactions, attaching other substances to the nanotube walls. In this way, the group has created dozens of "designer" nanotubes, each with its own unique properties.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>