Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers pinpoint genes involved in cancer growth

22.07.2003


In a study made possible by the sequencing of the human genome, scientists at the University of Illinois at Chicago have identified 57 genes involved in the growth of human tumor cells.



Some of these genes appear to be linked with the growth of cancerous cells only - not healthy cells - making them possible targets for new drugs that could halt the spread of disease without necessarily compromising normal processes.

The research relied on a strategy pioneered in the laboratory of Igor Roninson, distinguished professor of molecular genetics in the UIC College of Medicine. The strategy involves cutting human DNA into tiny, random fragments, inserting the fragments into a mammalian cell using a vector, or delivery vehicle, and inducing them to express their genetic information.


Some of the fragments prove to be biologically active by interfering with the function of the genes from which they are derived.

In the new study, certain fragments inhibited the multiplication of breast cancer cells by shutting down the genes necessary for cell growth. The experiment enabled researchers in Roninson’s laboratory, led by research assistant professor Thomas Primiano, to locate 57 genes involved in cell proliferation.

They identified the genes by matching the growth-inhibiting fragments with sequences in the human genome.

"Our strategy was validated by the fact that more than half of the genes we identified were already known to play key roles in the growth of cells or the development of cancers," Roninson said. "Many of the other genes, however, were not previously known to be involved in cell division and proliferation. In fact, the functions of some of these genes were entirely unknown."

Analysis of animal studies conducted by other investigators allowed Roninson’s group to determine which genes were likely involved in the growth of tumor cells but not normal cells. In so-called "knockout" mice, 20 of the genes the scientists identified as essential for the growth of breast cancer cells had previously been disabled.

Lacking any of six of these genes, the animals died in utero. But mice missing any of the other 14 genes matured to adulthood, suffering only limited problems in specific organs.

"Obviously, the best drug targets would be genes that are needed only by cancer cells," Roninson said.

One of the genes the UIC researchers identified manufactures a protein found on the cell surface called L1-CAM, which is involved in the development of the nervous system and was not previously known to play a role in cancer cell growth.

Using antibodies to L1-CAM to disturb its function, the researchers stopped the growth of breast, colon and cervical cancer cells in a petri dish, but left unimpaired the growth of normal breast tissue cells and fibroblasts, which make up connective tissue.

This final experiment, Roninson said, confirmed the value of his team’s study.

"One of the main reasons for sequencing the human genome was the hope that this knowledge would help scientists find molecular targets for new and better medicines," Roninson said. "The genes we have identified clearly have the potential to serve as targets for novel therapeutics in the fight against cancer."

Other UIC researchers involved in the study were Mirza Baig, Anil Maliyekkel, Bey-Dih Chang, Stacey Fellars and Justin Sadhu. The UIC team collaborated with scientists Sergey Axenovich and Tatyana Holzmayer at PPD Discovery, Inc.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu
http://www.uic.edu/depts/mcam

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>