Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to gene knockouts reveals the "master planners" of the skeleton

18.07.2003


Howard Hughes Medical Institute researchers are moving closer to understanding how the global pattern of the skeleton of mammals is formed during development. In an exceptionally demanding series of experiments, the researchers knocked out entire sets of two families of genes suspected in playing a central role in establishing the pattern of the skeleton in the mammalian embryo.

Their findings regarding the "paralogous" gene families known as Hox10 and Hox11 establish that the genes play important roles in orchestrating the construction of the ribs, spine and limb bones. Paralogous genes are sets of genes that have overlapping function. They arose during evolution through gene duplication.

The studies on Hox10 and Hox11 were published in the July 18, 2003, issue of the journal Science by HHMI investigator Mario R. Capecchi and colleague Deneen M. Wellik, who are both at the University of Utah.



According to Capecchi, the findings should also spur other scientists studying genes controlling mammalian development to test the effects of knocking out multiple members of the Hox gene families. Knocking out multiple genes will enable scientists to "peel away" the layers of redundant gene function to more closely discern the true developmental roles of specific members of the Hox gene families.

The 13 sets of Hox genes, each with multiple members, have long been known to be "transcriptional regulators" that control the multitude of genes involved in embryonic development. However, said Capecchi, experiments in which one or another of the Hox genes were knocked out provided little information about the functions of individual Hox genes.

"It was confusing," said Capecchi, referring to results from earlier gene knockouts of Hox10 and Hox11. "When individual genes were knocked out, the resulting animals might have an extra rib or vertebrae or be missing one. And sometimes one structure would transform to look like another or just be misshapen. Even if you inactivated five out of the six genes, you still got very small effects. So, while it was clear these genes were working in the region of the ribs and spine, it wasn´t clear what they were doing."

So, Wellik and Capecchi attempted the difficult task of knocking out all of the Hox10 or Hox11 paralogous gene forms, or alleles. The experiments were particularly challenging because eliminating the genes profoundly affected the embryonic development and survival of the mice. Another complication was that many of the surviving animals were sterile. But when the scientists managed to produce knockout mice that survived to birth with the entire gene sets missing, the effects on development were dramatic.

"When we eliminated all the Hox10 genes, we obtained animals that made ribs essentially all the way from the normal thoracic region down through the tail," he said. "What´s interesting is that this is the body plan of most fish as well as the early tetrapods such as the dinosaurs. However, this plan resulted in an inflexible body, so mammals basically adapted the Hox genes to get rid of some of those ribs to increase flexibility and speed."

When the researchers knocked out the Hox11 genes, the animals´ lower, or sacral, vertebrae assumed the identity of lumbar vertebrae (those between the sacral and the rib-supporting thoracic vertebrae) and no sacral vertebrae developed in the animal.

The researchers also found that knocking out the Hox10 or Hox11 genes affected the length of specific limb bones, demonstrating a role for those genes in patterning of limbs.

"All these results tell us that these genes control global patterning of the skeletal structures, as opposed to forming the structures rib by rib, for example," said Capecchi. "This understanding also suggests an evolutionary pathway by which vertebrates could evolve different patterns for different species."

A major challenge for researchers studying the genetic control of development will be to detect where the panoply of Hox genes are expressed in the growing embryo, said Capecchi. "We´ve demonstrated that the expression patterns of these genes are fairly dynamic," he said. "So, when researchers are looking for expression of specific Hox genes in a given tissue, they might not see them because the genes are expressed only during certain periods of development." Multiple knockout studies such as the ones done on Hox10 and Hox11 may also yield valuable clues into how the genes affect one another, he said.

Future experiments by the researchers, as well as their colleagues studying other Hox genes, may involve knocking out all genes in the individual paralogous Hox gene sets and attempting to discern the roles of those gene sets from observing the alterations in development of the body plan.

"However, my guess is that nature won´t be that kind to us," said Capecchi. "I suspect that sometimes development of a particular structure will involve using members of an entirely different paralogous family. So, our knockouts may have to be much broader than we now believe."

Another major challenge, he said, will be determining which genes the Hox genes target to control development. "In the end, we have to figure out what it means in a molecular sense to make a rib or not to make a rib," said Capecchi. However, he said, the research thus far has yielded important insights.

"Even among mammals, there are enormously different body shapes, from giraffes, to monkeys and humans, to mice. And the take-home lesson from research such as ours is that you can generate all these different body plans using moderately simple rules and the same set of genes, but just modulating them differently.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>