A water-dwelling rotifer (Brachionas calyciflorus) is surrounded by algae (Chlorella vulgaris) it hopes to eat by waving its cilia, at top, and drawing them into its mouth. In fresh water, these rotifers are barely visible as white specks while the microscopic algae are 100 times smaller. T.Yoshida and R.O. Wayne/Cornell University.
Glass chemostats like these, filled with water, nutrients, predators and prey - were used to demonstrate rapid evolution in a matter of weeks by Cornell biologists, including, from left, Nelson Hairston Jr., Stephen Ellner and Gregor Fussmann. Cornell University Photography Copyright © Cornell University
In the fishbowl of life, when hordes of well-fed predators drive their prey to the brink of extinction, sometimes evolution takes the fast track to help the hunted survive -- and then thrive to outnumber their predators.
This rapid evolution, predicted by Cornell University biologists in computer models and demonstrated with Pac-Man-like creatures and their algae food in laboratory habitats called chemostats, could play an important role in the ecological dynamics of many predator-prey systems, according to an article in the latest issue (July 17, 2003) of the journal Nature .
Physicians, the Cornell biologists say, should keep this rapid evolution in mind when investigating interactions between diseases and victims. As one example, they say, it is useful in trying to understand how HIV, the AIDS virus, manages to evolve so swiftly that development of improved vaccines is extremely difficult.
Roger Segelken | Cornell University News Service
Further information:
http://www.cornell.edu
Predicting a protein's behavior from its appearance
10.12.2019 | Ecole Polytechnique Fédérale de Lausanne
Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...
University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making
In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
City research draws on Formula 1 technology for the construction of skyscrapers
10.12.2019 | Architecture and Construction
Reorganizing a computer chip: Transistors can now both process and store information
10.12.2019 | Information Technology
Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | Life Sciences