Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers define regions of human genes highly prone to mutation

15.07.2003


UT Southwestern Medical Center at Dallas researchers have taken the first step in defining the sites in human genes most prone to mutation, which eventually could lead to discovery of the genetic bases of many human diseases.


Dr. Harold "Skip" Garner, foreground, and John W. "Trey" Fondon III have taken the first step in defining the sites in human genes most prone to mutation.



Their work will appear in an upcoming issue of the journal Gene and is currently available online.

Dr. Harold “Skip” Garner, professor of biochemistry and internal medicine, and his colleagues made their discovery while mining databases of coding single nucleotide polymorphisms (cSNPs) held by the National Center for Biotechnology Information, the SNP Consortium, the National Cancer Institute and the Institute of Medical Genetics at Cardiff, Wales. Single nucleotide polymorphisms (SNPs) are the most common and simplest form of genetic mutation in the human genome.


In their analysis, the researchers showed that a large fraction of human cSNPs occur at only a few distinctive and usually recurrent DNA sequence patterns. However, such events within the genome account for a disproportionate amount of all gene point mutations.

Developing an association between phenotype (the outward, physical manifestation) and genotype (the internally coded, inheritable information) is vital toward understanding and identifying indications of disease.

“This discovery can be used to essentially define the likelihood of one gene to mutate relative to others as a function of both time and environment,” said Monica M. Horvath, molecular biophysics graduate student and co-author. “cSNP trends are critical to quantify in order to develop hypotheses regarding the complexity and range of mutational mechanisms that generate both genome diversity and disease.”

The next phase, Ms. Horvath said, is to employ both experimental and computational tests to benchmark how well these trends can predict mutations not yet found in the human genome.

“What I like the most about this work is that it shows that as proteins evolve, natural selection has considerable latitude, not only in determining the amino acid sequence of a protein, but also in determining how frequently and severely to break it,” said John W. Fondon III, molecular biophysics graduate student and contributing author.

“What Ms. Horvath has done is to essentially crack the code within the code – to reveal how selection exploits redundancy within the genetic code to specify whether a particular amino acid letter in a protein is written in stone, with ink, or in wet sand at low tide.”

An important application of this research is that with enhanced knowledge of where mutations are most likely to occur, medical geneticists can take more aggressive approaches to discover the genetic basis of many human diseases.

“We know the genome is very big, and there currently is no technology to remeasure every single letter of this 3-billion-letter code,” said Dr. Garner.

“A very significant byproduct of this research into the complex interplay between mutation and selection is that Ms. Horvath has revealed some clear rules that can contribute to the design and execution of genetic association studies. This will become an important component of the solution to the currently intractable problems presented by complex diseases that involve many genes.”

The research was supported by a National Institute of Health grant, Program in Genomic Applications grant, the Biological Chemical Countermeasures program of The University of Texas and the state of Texas Advanced Technology Program.

Media Contact: Scott Maier
214-648-3404
or e-mail: scott.maier@utsouthwestern.edu

Scott Maier | UT Southwestern
Further information:
http://irweb.swmed.edu/newspub/newsdetl.asp?story_id=628

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>