Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers define regions of human genes highly prone to mutation

15.07.2003


UT Southwestern Medical Center at Dallas researchers have taken the first step in defining the sites in human genes most prone to mutation, which eventually could lead to discovery of the genetic bases of many human diseases.


Dr. Harold "Skip" Garner, foreground, and John W. "Trey" Fondon III have taken the first step in defining the sites in human genes most prone to mutation.



Their work will appear in an upcoming issue of the journal Gene and is currently available online.

Dr. Harold “Skip” Garner, professor of biochemistry and internal medicine, and his colleagues made their discovery while mining databases of coding single nucleotide polymorphisms (cSNPs) held by the National Center for Biotechnology Information, the SNP Consortium, the National Cancer Institute and the Institute of Medical Genetics at Cardiff, Wales. Single nucleotide polymorphisms (SNPs) are the most common and simplest form of genetic mutation in the human genome.


In their analysis, the researchers showed that a large fraction of human cSNPs occur at only a few distinctive and usually recurrent DNA sequence patterns. However, such events within the genome account for a disproportionate amount of all gene point mutations.

Developing an association between phenotype (the outward, physical manifestation) and genotype (the internally coded, inheritable information) is vital toward understanding and identifying indications of disease.

“This discovery can be used to essentially define the likelihood of one gene to mutate relative to others as a function of both time and environment,” said Monica M. Horvath, molecular biophysics graduate student and co-author. “cSNP trends are critical to quantify in order to develop hypotheses regarding the complexity and range of mutational mechanisms that generate both genome diversity and disease.”

The next phase, Ms. Horvath said, is to employ both experimental and computational tests to benchmark how well these trends can predict mutations not yet found in the human genome.

“What I like the most about this work is that it shows that as proteins evolve, natural selection has considerable latitude, not only in determining the amino acid sequence of a protein, but also in determining how frequently and severely to break it,” said John W. Fondon III, molecular biophysics graduate student and contributing author.

“What Ms. Horvath has done is to essentially crack the code within the code – to reveal how selection exploits redundancy within the genetic code to specify whether a particular amino acid letter in a protein is written in stone, with ink, or in wet sand at low tide.”

An important application of this research is that with enhanced knowledge of where mutations are most likely to occur, medical geneticists can take more aggressive approaches to discover the genetic basis of many human diseases.

“We know the genome is very big, and there currently is no technology to remeasure every single letter of this 3-billion-letter code,” said Dr. Garner.

“A very significant byproduct of this research into the complex interplay between mutation and selection is that Ms. Horvath has revealed some clear rules that can contribute to the design and execution of genetic association studies. This will become an important component of the solution to the currently intractable problems presented by complex diseases that involve many genes.”

The research was supported by a National Institute of Health grant, Program in Genomic Applications grant, the Biological Chemical Countermeasures program of The University of Texas and the state of Texas Advanced Technology Program.

Media Contact: Scott Maier
214-648-3404
or e-mail: scott.maier@utsouthwestern.edu

Scott Maier | UT Southwestern
Further information:
http://irweb.swmed.edu/newspub/newsdetl.asp?story_id=628

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>