Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant genes imported from unrelated species more often than previously thought, IU biologists find

10.07.2003


Scientists have long thought gene exchange between individuals of unrelated species to be an extremely rare event among eukaryotes -- the massive group of organisms that counts among its members humans, oak trees, kelp and mushrooms -- throughout the group’s 2 billion year history.



But a new Indiana University Bloomington study in this week’s Nature suggests that such genetic events, called horizontal gene transfers, have happened more often than previously thought during the evolution of flowering plants. The finding hints other eukaryotes have had significant genetic influence from completely unrelated species.

"It appears horizontal gene transfer occurs for just about any gene in the plant mitochondrial genome," said biologist and Class of 1955 Endowed Professor Jeffrey Palmer, who led the research. "There is no reason to believe that this finding would apply only to plants. We already know from past studies that other eukaryotes experience the same mechanisms of horizontal transfer for certain special pieces of DNA called transposable elements. Our results now extend this phenomenon to the thousands of ordinary genes in a genome."


It has been common knowledge for years that horizontal gene transfer among bacteria is extremely common. Some scientists believe that as much as 25 percent of certain bacterial species’ chromosomal DNA has been acquired by way of horizontal transfer.

In eukaryotes, the rule remains that individuals get their genes from parents intergenerationally through the more familiar process called vertical transmission. But Palmer said scientists have probably underestimated the rate at which non-traditional gene transfer happens in eukaryotes.

"While our data set was small and real rates of eukaryotic horizontal gene transfer were therefore hard to predict, we can infer that even conservatively, horizontal gene transfer must have happened in flowering plants thousands of times," Palmer said.

One of the assumptions scientists make when comparing DNA from different species is that the DNA has followed basic lines of heredity connected in the past by a common ancestor. If DNA used in these gene studies does not descend vertically, from parent to offspring, but horizontally, by jumping from another lineage, analyses might turn up confusing or misleading evolutionary relationships between species. But Palmer isn’t worried about that.

"We don’t believe horizontal gene transfer happens often enough to throw a monkey wrench into molecular genealogical studies," he said.

While the mechanisms of horizontal gene transfer are still unknown, various explanations suggest that viruses, bacteria and fungi pack errant genetic material, or that accidental cross-species mating may play a role. However it happens, Palmer said there is no question it doeshappen. Many scientists have reported unexpectedly finding one species’ gene in another species with no reasonable explanation except horizontal gene transfer.

After encountering unique gene sequences along circular mitochondrial DNA chromosomes in three flowering plant species, Palmer and his team sought to determine the source of the anomalous genetic material. Part of the mystery was that closely related flowering plants did not possess the same gene sequences. Most of the genes the researchers examined encode parts of ribosomes, tiny assembly plants that make proteins by connecting amino acids.

Palmer’s team amassed mitochondrial gene sequence data from about 100 angiosperm species and looked for sequence similarities between them. In creating a tree of relatedness between the sequences, the scientists found that the mitochondrial genes from five flowering species -- kiwi fruit, honeysuckle, birch, bloodroot and Amborella (the most primitive flowering plant in existence) -- appeared far more related to unrelated species than to species more closely related to them, strongly suggesting that the four species had acquired these particular genes by way of horizontal transfer.

In the case of the bloodroot, the researchers were astonished to find a hybrid, "chimeric" mitochondrial gene. Half of this gene was captured by horizontal transfer from an unrelated plant over 100 million years distant in time, while the other half had been transmitted faithfully from parent to offspring in the lineage leading to bloodroot. "This result was so surprising, our first thought was that we’d made a mistake," Palmer said. "Once it was confirmed we had not made an error, we understood that what we’d found was very exciting."


###
Ulfar Bergthorsson (Indiana University Bloomington), Keith Adams (now at Iowa State University) and Brendan Thomason (now at the University of Michigan School of Medicine) also contributed to the study. It was funded by a grant from the National Institutes of Health.

To speak with Palmer or Bergthorsson, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>