Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome researcher analyze chromosome 7

10.07.2003


New study discovers unusual structural features implicated in disease



A detailed analysis of the reference sequence of chromosome 7 has uncovered structural features that appear to promote genetic changes that can cause disease, researchers from the International Human Genome Sequencing Consortium said today.

In a study published in the July 10 issue of the journal Nature, a multi-institution team, led by the Washington University School of Medicine in St. Louis, reported it had sequenced 99.4 percent of the gene-containing region of chromosome 7 to an accuracy of greater than 99.99 percent. The team also described its analysis of this highly accurate reference sequence, an effort that took advantage of recently released data on the mouse genome to refine gene predictions and zero in on chromosomal regions that may be of special interest in understanding genetic diseases.


In addition to representing the largest chromosome to date to undergo detailed sequence analysis, chromosome 7 is significant because it has served as a pioneering chromosome for genomic and genetic studies. Researchers first developed genome mapping techniques on chromosome 7, and in the late 1980s, this chromosome was also the first to be searched by a then-novel technique called positional cloning in the successful hunt for the cystic fibrosis gene.

"Chromosome 7 has long been of interest to the medical community. Besides containing many genes that are crucial to development, this chromosome also holds the gene for cystic fibrosis and is frequently damaged in some types of leukemia and other cancers," said Francis S. Collins, M.D., Ph.D., director of the National Human Genome Research Institute (NHGRI), which funded, and also participated in, the study. "This new analysis, coupled with our commitment to free and unrestricted access to sequence data, should further speed the discovery of genes on chromosome 7 related to human health and disease."

Among the study’s most interesting results was the finding that, compared with previously analyzed human chromosomes, chromosome 7 contains an unusually high amount of duplicated sequence segments, covering roughly 8 percent of its DNA sequence. Researchers do not yet know the mechanism behind this high rate of duplication and also do not know why the duplication is much more extensive on the short arm of chromosome 7 than on its long arm.

However, in their study, researchers noted that this segmental duplication may encourage the type of genetic deletions that cause disease, as appears to be the case with the chromosomal region implicated in Williams-Beuren syndrome.

The syndrome, which is characterized by growth deficiency, heart disorders and mild mental retardation, is associated with very large deletions in a region of the long arm of chromosome 7 – a region that the new analysis also found to be a hotbed of duplicated segments. Based on previous, smaller-scale studies, genetic scientists know that such duplicated segments, or duplicons, serve to encourage large-scale deletions and other dramatic rearrangements of genetic material. It is also known that, in addition to their potential to cause disease by disrupting genes, such genetic rearrangements may on rare occasions be beneficial by facilitating the formation of new genes.

Richard K. Wilson, Ph.D., director of the Washington University School of Medicine’s Genome Sequencing Center and lead author of the study, said, "Our findings underscore the dynamic nature of the human genome and reveal how sequence structure may provide us with new insights into the genetic basis of human disease. But this analysis also drives home the fact that we still have a long way to go – that we are just taking our first steps down the pathway to understanding the complicated interplay of genomics and health. Each chromosome that we analyze will likely add a new twist or turn."

In their analysis of the highly polished reference sequence, Dr.Wilson and his colleagues identified approximately 1,150 protein-coding genes on chromosome 7, about 20 percent less than the 1,455 predicted in a previous study by a different team.

The accuracy and completeness of the human chromosome 7 sequence assembled by the International Human Genome Sequencing Consortium was evaluated in part by Eric D. Green, M.D., Ph.D., and his colleagues at NHGRI’s Genome Technology Branch. When they compared the representation of markers called sequence-tagged sites (STSs) in the recently assembled sequence with STSs in previously constructed physical and genetic maps of chromosome 7, the NHGRI researchers found an excellent overall concordance.

Dr. Green, who is NHGRI’s scientific director and a co-author of the study, also emphasized the value of comparing the sequence of human chromosome 7 to its recently sequenced counterpart in the mouse. "Comparing the human sequence to the mouse sequence allowed our team to perform much more rigorous analyses of genes than would have otherwise been possible. The ability to place the human sequence alongside the mouse sequence helped us to swiftly distinguish real, protein-coding genes from pseudo-genes. The power of comparative genomics really sharpened our focus," Dr. Green said.

In addition to NHGRI and Washington University, other institutions taking part in the chromosome 7 analysis were: University of Washington Genome Center, Seattle; University of California, Santa Cruz; Case Western Reserve University School of Medicine, Cleveland; and EMBL, Heidelberg, Germany.

There are 23 pairs of chromosomes in the human genome, which bear the 3 billion DNA letters that carry the genetic blueprint for human life. Chromosome 7 is one of the larger chromosomes, containing about 5 percent of the DNA in the human genome.

The sequencing work on chromosome 7 was carried out at the Genome Sequencing Center at the Washington University School of Medicine as part of the Human Genome Project, which receives substantial funding from NHGRI. The Human Genome Project officially began in October 1990 and was completed in April 2003. The entire project, including genetic mapping, technology development, the study of model organisms, and the ethical, legal and social implications (ELSI) program, was completed more than two years ahead of schedule at a cost that was $400 million less than expected.

The initial analysis of the draft human genome sequence was published in Nature in February 2001. With the completion of the Human Genome Project, researchers plan to publish a separate analysis on each completed chromosome over the next year or so. In addition to chromosome 7, researchers with the International Human Genome Sequencing Consortium have already published analyses of chromosomes 14, 20, 21, 22 and Y.


NHGRI is one of the 27 institutes and centers at the National Institutes of Health, an agency of the Department of Health and Human Services. Additional information about NHGRI can be found at its Web site, http://www.genome.gov.

Geoff Spencer | EurekAlert!
Further information:
http://www.nhgri.nih.gov/
http://www.genome.gov

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>