Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melbourne scientist overturns 30 year calcium dogma

09.07.2003


A University of Melbourne research team has overturned 30 years of dogma on how a cell transports calcium, revealing potential insights into cancer and neuro-degenerative diseases.



Professor Mike Hubbard, Department of Paediatrics and School of Dental Science, will reveal his research in this area at the International Congress of Genetics, Melbourne on Thursday 10 July. He will also discuss the latest on their recent discovery of a new class of protein that they have linked to breast cancer and fertility.

Hubbard, a trained dentist and bio-medical researcher, is using proteomics to investigate the role of calcium and cell survival. When beginning this research, he knew that dental enamel cells process large amounts of calcium and have the unusual capacity to survive high concentrations of the stuff. This led to Hubbard adopting the dental enamel cell as his research model.


Calcium is a critical component of cell survival and function; too much or too little will kill a cell.

“Cells from major calcium-transporting tissues such as the kidney, gut and developing teeth, are likely to be informative about the cellular mechanisms used to handle calcium safely,” says Hubbard.

“Cancer cells thwart the system by being able to thrive with high concentrations of calcium. Knowledge of the calcium-handling machinery in normal cells should help our understanding of how cancer cells manage this feat,” he says.

By contrast, brain cells in people with neuro-degenerative diseases such as Alzhiemer’s are unusually susceptible to the toxic effects of excess calcium.

For the last 30 years scientists have been basing their research in this area on the assumption that calcium was actively transported across the cell via a specific a protein acting as a form of packhorse.

Hubbard and his dental enamel cells have now confirmed this dogmatic assumption to be false.

“Any drug development looking to block particular aspects of the calcium transport machinery would probably have failed based on the old assumption,” says Hubbard.

Hubbard’s alternative calcium transport system is based on the cell’s protein factory called the Endoplasmic Reticulum (ER). The ER can withstand high concentrations of calcium. Hubbard’s research suggests that the ER acts as a conduit for calcium from one side of the cell to the other.

New protein, new mystery
In the process of unravelling the conundrum of calcium transport, proteomics handed Hubbard and his team a second unexpected discovery in the form of a new protein. They have since found the protein abundant in just about every tissue of the body, but it is especially abundant in brain, lung and breast tumour cells.

The protein is also found in Drosophila, so is highly conserved, suggesting again that it has an important function. The more important the function of a protein or gene, the greater it tends to be conserved through evolution. Fruit flies without this protein are sterile.

Three international teams, including Hubbard’s, are now trying to pinpoint the role of this protein.

“We know it is important, but its exact role is proving hard to pin down. Every stone we turn over tells us it is an extremely important protein,”

Most of Hubbard’s research was done with the University of Otago, New Zealand. Hubbard’s team first reported the new protein in 1997. Prof Hubbard was appointed as Professorial Fellow, Oral and Facial Sciences, in the Department of Paediatrics and School of Dental Science, University of Melbourne in January 2003.

Jason Major | University of Melbourne
Further information:
http://uninews.unimelb.edu.au/view.php?articleID=747

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
11.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
11.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>