Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lone gene could force re-think on pest insect control

09.07.2003


Scientists have discovered a single gene that gives the vinegar fly resistance to a range of pesticides, including DDT, but warn it could spell disaster if found in pest insect species.



The geneticists from the University of Melbourne fear that should this mutation arise in pest insects, the world will need to rethink its overall control strategies.

The researchers are part of the Centre for Environmental Stress and Adaptation Research (CESAR) a special research centre that includes researchers from the Universities of Melbourne, La Trobe and Monash. They will present their findings as a series of posters at the International Congress of Genetics on Monday 7 July.


The discovery of a single mutation in one gene has provided the fly (Drosophila sp) with resistance to a range of commonly available, but chemically unrelated, pesticides.

What has baffled and worried the researchers is that the flies are rarely targeted with insecticides and many of the chemicals it is resistant to, it has never been exposed to before.

“The fact that a single mutation can confer resistance to the banned insecticide DDT and a range of unrelated pesticides, even to those the species has never encountered, reveals new risks and costs to the chemical control of pest insects,” says Michael Bogwitz, one of the poster authors.

“This research shows how easy it is for a single mutation to have such a diverse impact. A similar mutation in a pest species could have devastating consequences,” he says.

“Unless we reassess our current methods of pest management, our future options for control may become severely restricted.”

Their research suggests the mutation arose in Drosophila soon after the introduction of DDT and has since spread throughout the world. But unlike a normal mutation, this one persisted rather than disappeared as the use of DDT around the world declined.

Mutations normally only persist if there is selective pressures from the environment that give individuals with the mutation an advantage over the rest of the population. When that pressure is removed, for instance the banning of DDT, individuals with the mutation are usually less fit and selected against, with fitter individuals replacing them.

“Having the mutation does not appear to affect the fitness of individuals. This could add to the problem of controlling pest species should the gene be found in these species as well,” says Bogwitz.

“This highlights more than ever that what we do today to control pests could irreversibly change the gene pool of that species,” he says.

The culprit – Cyp6g1
The Drosophila gene causing all the concern is called Cyp6g1. It is part of a large family of genes called the Cytochrome P450 genes that are found in many species, including humans.

Previous studies have implicated some members of this P450 family in pesticide resistance. However the function of the majority of the 90 Drosophila P450 genes is unknown.

CESAR researchers are now analysing these genes to determine their function in Drosophila and in the pest insects, the cotton bollworm (Helicoverpa armigera) and the sheep blowfly responsible for flystrike (Lucilia cuprina).

“Our capacity to control pests would be significantly improved if we understood the defence mechanisms controlled by these genes,” says Trent Perry, member of the poster team.

In the Drosophila, Cyp6g1 confers resistance by producing up to 100 times more than the normal level of protein that breaks down DDT and other pesticides. Given the number of P450 genes present in Drosophila, it was unexpected that a single version of one gene could be associated with such widespread resistance, and that this resistance also applied to a wide range of compounds that bear no resemblance to each other in structure or mode of function. These compounds include organochlorines, organophosphorous, carbamate and insect growth regulator insecticides.

“Our research, so far, does not unequivocally demonstrate that Cyp6g1 is the sole culprit for this resistance, but the current evidence leaves little doubt that about its central role,” says Perry.

Bogwitz and Perry’s posters cover their latest research into the resistance qualities of Cyp6g1 and also provide insight to secondary mechanisms of resistance that may be operating.

The primary research was done by Dr Phil Daborn in the laboratory of Professor Richard ffrench-Constant at the University of Bath. Dr Daborn started the initial work as a PhD student under Dr Phillip Batterham and Professor John McKenzie at the University of Melbourne and is about to start post-doctoral studies in Batterham and McKenzie’s lab. Other collaborators on the poster include Dr Batterham, Dr David Heckel.

Jason Major | University of Melbourne
Further information:
http://uninews.unimelb.edu.au/view.php?articleID=748

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>