Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. Iowa study adds to understanding of salt-taste

03.07.2003


Saltiness often enhances our enjoyment of certain foods -- think French fries or a Margarita. But salt is an essential nutrient for humans and other animals, and far from being a trivial matter of taste, the ability to detect salt is critical for survival. A University of Iowa study provides insight on how humans and other animals are able to detect salt. The study appears in the July 3 issue of Neuron.



"Given that salt is essential for survival, it is not surprising that animals have developed the ability to detect salt, even at low concentrations. This sense allows them to seek out, and then consume salt," said Michael Welsh, M.D., the Roy J. Carver Biomedical Research Chair in Internal Medicine and Physiology and Biophysics, UI Professor, and Howard Hughes Medical Institute Investigator. "We were interested in identifying the receptors that detect small quantities of salt."

The ability to detect when something is too salty is also important. Consuming very high concentrations of salt could be potentially harmful.


Previous research suggested a role for a specific type of protein in salt-sensing. Lei Liu, Ph.D., UI postdoctoral researcher and lead author of the study, and colleagues turned to the fruit fly (Drosophila melanogaster) to investigate these proteins, known as ion channel proteins.

Fruit flies and humans share the ability to detect salt. Fruit flies also respond to salt in ways that are similar to those seen in humans and other animals. For example, fruit flies are attracted to low salt but are repelled by high salt.

"In humans the taste system is pretty much a puzzle because it is hard to study," Liu said. "But in fruit flies it is very easy to study and you can quickly test ideas. Also, fruit flies are a great genetic model where you can easily screen many different genes to determine what they do and how they interact."

The ion channel genes studied are called pickpocket (ppk). The UI team discovered that two of these ion channel genes are involved in the detection of low salt concentrations. The study also suggests that these genes play some role in detecting high salt concentrations, but it is likely that other pathways also are involved in high salt detection.

The UI team focused on the two pickpocket genes, ppk11 and ppk19, because they found that these genes are expressed in body parts of the flies that are involved in taste-sensing. In the fruit fly larva (young flies) the genes are expressed in a body part known as the terminal organ, which resembles a human taste bud.

Using a series of behavioral experiments, the UI researchers discovered that disrupting the two genes impaired the ability of young flies to detect low salt concentrations.

Normally, young fruit flies prefer water containing low salt concentrations to plain water. However, young flies with disrupted genes were unable to detect low salt. Disrupting either gene also altered how both young and adult flies reacted to high salt concentrations.

"When we disrupt the genes we see defects in behavior," Liu said. "To see if the receptor cell itself is being affected, we measured the action potential (nerve impulse) of the receptor cell in the terminal organ of the mutant larva. The response of the receptor cell to salt is reduced by the mutation."

The UI study also showed that the two genes play a role in the ability of flies to distinguish between different types of salt (sodium chloride and potassium chloride). However, disrupting the genes did not seem to affect the fruit flies’ responses to other tastes.

Understanding salt-sensing mechanisms and identifying two ion-channel proteins that detect low salt in fruit flies may be directly relevant to the salt-sensing system in humans.

Although salt is an essential nutrient, individuals with certain conditions such as high blood pressure or heart failure are often advised to reduced their salt intake. Liu said that identifying the receptors involved in salt detection may eventually aid in the design of salt substitutes, which enhance flavor but do not hurt our health.

In addition to Liu and Welsh, Soren Leonard, Ph.D., David Motto, M.D., Ph.D., Margaret Feller, Margaret Price, Ph.D., and Wayne Johnson, Ph.D., UI professor of physiology and biophysics, also were involved in the study. The work was funded in part by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.



STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

Media Contact Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>