Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting closer

01.07.2003


USC researchers have moved one step closer to understanding how the body fights harmful antigens – foreign molecules that trigger an immune response.

The team successfully simulated a mutation process that diversifies the proteins, or antibodies, responsible for immunity – a phenomenon known as somatic hypermutation. This process enables the body to fight off a wide range of diseases.

Their findings are detailed in the July 3 issue of the journal Nature.



"When performing laboratory – or in vitro experiments – you always hope to get results that are close to the real thing," said John Petruska, one of the paper’s authors and a professor of molecular biology in USC’s College of Letters, Arts & Sciences. "In this case, it is fascinating to discover that the somatic hypermutation process in vitro is nearly identical to that in a natural environment."

"This is the first step in building an in vitro system that would completely mimic the body’s immune response," Petruska added.

One of the first tactics the immune system uses to fight off foreign molecules is the production of protective antibody proteins, which are unique in their unlimited ability to diversify.

As one’s immune response intensifies, antibodies undergo mutations that enable them to attack foreign molecules more forcefully, said Phuong Pham, the paper’s lead author and a USC molecular biology postdoctoral researcher.

That process is known as somatic hypermutation.

Those more powerful antibodies allow the immune system to respond quickly and effectively to pathogens, particularly those from previous infections. In other words, the antibodies are much like soldiers sent to fight an enemy they’ve encountered in the past.

People whose immune systems lack the ability to create these strengthened antibodies may suffer from recurring bacterial and viral infections and do not respond to vaccinations.

Somatic hypermutation requires an enzyme called AID (Activation-Induced Cytidine Deaminase) which works on single-stranded DNA – a discovery made by the USC team earlier this year.

By allowing AID to work on single-stranded viral DNA containing a mutational marker gene, the researchers (using specialized laboratory techniques) were able to identify which DNAs contained mutations and which did not.

"The action of AID yielded the same specific mutational hot and cold spots along DNA strands that are observed in human antibody proteins," explained Myron F. Goodman, a professor of molecular biology and chemistry in USC’s College of Letters, Arts & Sciences and senior author of the Nature paper.

Those "hot" spots, identified by specific DNA sequences, allowed the researchers to clearly see where the mutations took place. In fact, the experiment yielded 14 out of 15 hot spots with perfect DNA sequences, demonstrating that the mutation process had gone off without a glitch.

"Remarkably, the results showed that AID acting alone on single-stranded DNA simulated the highly complex somatic hypermutation process that occurs in humans," Goodman said.

Furthermore, the team’s data revealed that the AID enzyme works its way along individual DNA strands, as opposed to jumping from one strand to another.

Because many of the DNA strands remained untouched as part of this methodical process, the team found that 98 percent of its experimental DNA had no mutations.

Among the 2 percent that did, half exhibited between one and 20 mutations, while the other half showed up to 80.

"It confirms that AID is working on individual pieces of DNA, instead of jumping around," Goodman said.

Overall, the USC team of researchers was impressed by AID’s role in the entire process.

"AID can’t account for somatic hypermutation by itself because we know that other enzymes are involved," Goodman explained. "But it’s pretty darn impressive to see that AID accounts for almost everything in the mutational targeting process."

The team’s work is yet another feat in the quest to uncover how the body’s immune system fights an enormous array of antigens, employing a delicate balance of mutations.

"Mutations can be both helpful and harmful," Petruska said. "Balance is key."

Gia Scafidi | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>