Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key regulatory enzyme is a molecular ’octopus’

20.06.2003


After seven years of work, researchers have succeeded in deducing the three-dimensional structure of an elusive and complex protein enzyme that is central to regulating the body’s largest family of receptors. These receptors, called G-protein-coupled receptors, nestle in the cell membrane and respond to external chemical signals such as hormones and neurotransmitters, to switch on cell machinery.



The thousands of such receptors throughout the body play a fundamental role in the mechanisms of sight, smell and taste, and in regulating heart rate, blood pressure and glucose metabolism. The receptors are by far the most common target for drugs that affect cardiac output, blood pressure and many other physiological functions. Thus, said the researchers, their fundamental discovery could guide pharmaceutical companies in creating a new class of drugs that aim not at blocking the receptors themselves, but at modulating the machinery that regulates them. Such drugs could treat a range of disorders from congestive heart failure to Parkinson’s disease, they said.

The newly revealed structure of this receptor "off-switch" -- called a G protein-coupled receptor kinase (GRK) -- reveals the protein as the molecular equivalent of a three-armed octopus, with independent segments capable of performing multiple regulatory functions at once. Kinases are enzymes that act as molecular switches by adding phosphates to other proteins.


The researchers -- led by Howard Hughes Medical Institute investigator Robert Lefkowitz at Duke University Medical Center and John Tesmer of the University of Texas at Austin -- reported their findings in the May 23, 2003, issue of the journal Science. The team also included scientists from the University of Texas at Austin and University College London. Also on the research team was Darrell Capel of Duke.

"Fundamental to the regulation of all these receptors is the ability to damp their signaling in the face of constant stimulation," said Lefkowitz. "Years ago, we had discovered that this down-regulation occurs due to a phosphorylation of the activated receptor that triggers binding of a protein called beta arrestin. This protein stops further G protein signaling and acts as an adaptor and scaffolding that connects to other signaling molecules."

Thus, the cellular "stop signal" not only turns off the G protein, but immediately tags the receptor for recycling into the cell interior and turns on other signaling pathways, said Lefkowitz. His laboratory identified that enzyme as GRK, but a central mystery was how the family of GRK enzymes fulfills their intricate regulatory duties.

In the latest work the researchers deduced the structure of GRK2, the member of the GRK enzyme family that is active in heart muscle and many other tissues.

Critical to solving that mystery was obtaining the three-dimensional structure of GRK2 using X-ray crystallography. In this technique, pure crystals of a protein are bombarded by an intense X-ray beam, and the protein structure is deduced by analyzing the pattern of the beam’s diffraction. This structural determination was done by co-author John Tesmer and his colleagues.

The resulting structure revealed the details of three regions, or domains, of the GRK2 enzyme, which had earlier been identified by biochemical studies in the Lefkowitz laboratory:

  • The central, or catalytic domain is the region that triggers the phosphorylation reaction
  • The "regulator of G protein signaling homology" (RH) domain attaches to the G protein to switch it off, and
  • The "PH" domain enables GRK2 to home in on the G protein at the cell membrane and attach to it.

To reveal how GRK2 interacts with the G protein, the researchers obtained the structure of GRK2 attached to a subunit of the G protein to which it normally binds, or complexes. Lefkowitz noted that a particularly striking achievement was the production of pure crystals of the highly complicated protein complex by Tesmer and his colleagues.

"The results of this prodigious effort were some really striking and unanticipated insights into the structure of the GRK2 complex," said Lefkowitz. "For one thing, the three domains are not aligned in a straight line, but assembled as if they were the three vertices of an equilateral triangle. And their spacing allows them to perform their docking and catalytic functions simultaneously.

"This means that GRK2 could be a remarkably effective and multitasking mechanism for turning off G protein signaling." Thus, he said, the GRK2 is built to bind to the receptor and phosphorylate it, allowing attachment by beta arrestin, and at the same time, bind the G protein to switch it off.

"This structural determination has significance at two levels," concluded Lefkowitz. "First, it gives us important new information about the basic biology of this important regulatory mechanism. And second, it gives us the detailed molecular coordinates of this structure that guide drug developers in designing specific compounds to regulate the enzyme."

Contact: Dennis Meredith, dennis.meredith@duke.edu

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>