Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organelle’s discovery challenges theory, could alter approach to disease treatment

18.06.2003


Researchers looking inside a pathogenic soil bacterium have found an organelle, a subcellular pouch, existing independently from the plasma membrane. The discovery within a prokaryotic organism challenges the theory on the origin of eukaryotic organelles and suggests a targeted approach to killing many disease-causing organisms.


Acidocalcisomes (the black spheres) as viewed in a trypanosome, a family of parasites that cause African sleeping sickness, Chagas disease and leishmaniasis and the first organisms where Docampo found this organelle. The cell is approximately 10 microns long and 4 microns wide. Courtesy of Kildare Miranda



"The organelle we found in the bacterium Agrobacterium tumefaciens is practically identical to the organelle called acidocalcisome in unicellular eukaryotes," said Roberto Docampo, a professor of veterinary pathobiology in the College of Veterinary Medicine at the University of Illinois at Urbana-Champaign.

Docampo began researching these organelles in 1994. He soon determined that a tiny granule in yeast, fungi and bacteria, thought to be for storage, was a fully operational organelle containing pyrophosphatase, a pump-like enzyme that allows proton transport. He named it an acidocalcisome for its acidic and calcium components. In 2000, he reported its existence in Plasmodium berghei, a malaria-causing eukaryotic parasite.


The newest discovery appeared in a paper published online this month by the Journal of Biological Chemistry. The paper, by Docampo and colleagues at the Center for Zoonoses Research and Laboratory of Molecular Parasitology at Illinois, will be published in a later print edition of the journal.

Agrobacterium tumefaciens is a prokaryote, a unicellular organism lacking membrane-bound nuclei. It causes crown gall disease in many broad-leaved plants but also is a favored tool for plant breeding because of its model system of DNA transfer into the hosts it invades. Samples were provided to Docampo’s team by biotechnology researcher Stephen K. Farrand, a professor of microbiology and crop sciences at Illinois.

Bacteria and other prokaryotes generally lack an endomembrane system.

Thus bacteria are presumed to lack compartments such as organelles not somehow linked to the plasma membrane ringing the organisms.

"What we describe is a discrete organelle independent of the plasma membrane," Docampo said. "It has a proton pump in its membrane, which is used to maintain its interior acidic content. This has never been described before in a bacterium."

The existence of discrete organelles is a defining component of unicellular eukaryotes, which have membrane-bound nuclei and specialized structures in their cell boundaries. The evolution of eukaryotic organelles "is a matter of extensive debate," Docampo said. The principle of endosymbiosis says that as microorganisms engulfed others, then new, membrane-surrounded organelles emerged in eukaryotes.

"It appears that this organelle has been conserved in evolution from prokaryotes to eukaryotes, since it is present in both. This argues against the belief that all eukaryotic organelles were formed when early eukaryotes swallowed prokaryotes," he said.

Using transmission electron and immunoelectron microscopy and X-ray microanalysis on the bacterium, researchers got a highly magnified and illuminated view.

They applied a fluorescent dye into the suspected organelle. They saw a membrane around it. The dye stained areas only within it, not in the cytosol. Serum containing antibodies to peptides related to pyrophosphatase unveiled this pump-like enzyme, and other staining techniques revealed high levels of polyphosphate only in the organelle.

Many parasites such as those that cause malaria, African sleeping sickness and toxoplasmosis and bacteria that contain these acidocalcisome organelles are pathogens.

Some pharmaceutical approaches have targeted pyrophosphate-related enzymes, Docampo said. "Our suggestion is that if drugs specifically targeted these organelles, you may be able to kill the entire organisms."

In addition to Docampo, other Illinois researchers were Manfredo Seufferheld, Mauricio C.F. Vieira, Felix A. Ruiz, Claudia O. Rodrigues and Silvia N.J. Moreno. The National Institutes of Health funded the research through a grant to Docampo.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/scitips/03/0617organelle.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>