Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organelle’s discovery challenges theory, could alter approach to disease treatment

18.06.2003


Researchers looking inside a pathogenic soil bacterium have found an organelle, a subcellular pouch, existing independently from the plasma membrane. The discovery within a prokaryotic organism challenges the theory on the origin of eukaryotic organelles and suggests a targeted approach to killing many disease-causing organisms.


Acidocalcisomes (the black spheres) as viewed in a trypanosome, a family of parasites that cause African sleeping sickness, Chagas disease and leishmaniasis and the first organisms where Docampo found this organelle. The cell is approximately 10 microns long and 4 microns wide. Courtesy of Kildare Miranda



"The organelle we found in the bacterium Agrobacterium tumefaciens is practically identical to the organelle called acidocalcisome in unicellular eukaryotes," said Roberto Docampo, a professor of veterinary pathobiology in the College of Veterinary Medicine at the University of Illinois at Urbana-Champaign.

Docampo began researching these organelles in 1994. He soon determined that a tiny granule in yeast, fungi and bacteria, thought to be for storage, was a fully operational organelle containing pyrophosphatase, a pump-like enzyme that allows proton transport. He named it an acidocalcisome for its acidic and calcium components. In 2000, he reported its existence in Plasmodium berghei, a malaria-causing eukaryotic parasite.


The newest discovery appeared in a paper published online this month by the Journal of Biological Chemistry. The paper, by Docampo and colleagues at the Center for Zoonoses Research and Laboratory of Molecular Parasitology at Illinois, will be published in a later print edition of the journal.

Agrobacterium tumefaciens is a prokaryote, a unicellular organism lacking membrane-bound nuclei. It causes crown gall disease in many broad-leaved plants but also is a favored tool for plant breeding because of its model system of DNA transfer into the hosts it invades. Samples were provided to Docampo’s team by biotechnology researcher Stephen K. Farrand, a professor of microbiology and crop sciences at Illinois.

Bacteria and other prokaryotes generally lack an endomembrane system.

Thus bacteria are presumed to lack compartments such as organelles not somehow linked to the plasma membrane ringing the organisms.

"What we describe is a discrete organelle independent of the plasma membrane," Docampo said. "It has a proton pump in its membrane, which is used to maintain its interior acidic content. This has never been described before in a bacterium."

The existence of discrete organelles is a defining component of unicellular eukaryotes, which have membrane-bound nuclei and specialized structures in their cell boundaries. The evolution of eukaryotic organelles "is a matter of extensive debate," Docampo said. The principle of endosymbiosis says that as microorganisms engulfed others, then new, membrane-surrounded organelles emerged in eukaryotes.

"It appears that this organelle has been conserved in evolution from prokaryotes to eukaryotes, since it is present in both. This argues against the belief that all eukaryotic organelles were formed when early eukaryotes swallowed prokaryotes," he said.

Using transmission electron and immunoelectron microscopy and X-ray microanalysis on the bacterium, researchers got a highly magnified and illuminated view.

They applied a fluorescent dye into the suspected organelle. They saw a membrane around it. The dye stained areas only within it, not in the cytosol. Serum containing antibodies to peptides related to pyrophosphatase unveiled this pump-like enzyme, and other staining techniques revealed high levels of polyphosphate only in the organelle.

Many parasites such as those that cause malaria, African sleeping sickness and toxoplasmosis and bacteria that contain these acidocalcisome organelles are pathogens.

Some pharmaceutical approaches have targeted pyrophosphate-related enzymes, Docampo said. "Our suggestion is that if drugs specifically targeted these organelles, you may be able to kill the entire organisms."

In addition to Docampo, other Illinois researchers were Manfredo Seufferheld, Mauricio C.F. Vieira, Felix A. Ruiz, Claudia O. Rodrigues and Silvia N.J. Moreno. The National Institutes of Health funded the research through a grant to Docampo.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/scitips/03/0617organelle.html

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>