Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Answer to age old question: Is visual recognition by wholes or by parts?

12.06.2003


In Letter to Nature, NYU and Syracuse neuroscientists prove that we read by detecting simple features



Do we visually recognize things -- words or faces -- by wholes or by parts? Denis Pelli of New York University and Bart Farell of Syracuse University have answered that question in their forthcoming Letter to Nature. Their article, "The Remarkable Inefficiency of Word Recognition," is accompanied by a "News and Views" piece discussing their work.

Using the example of letters and words, Pelli and Farell prove that we read by detecting simple features. This makes word recognition very inefficient. Even for the five most common three letter words -- the, and, was, for, him -- people cannot read the word unless the features of each letter are identifiable. The features in question are simple, much smaller than a letter.


In hundreds of thousands of trials, the researchers tested readers’ ability to recognize letters and words displayed at various contrasts. Comparing human performance with that of the mathematically defined ideal observer, they found that our visual system does not directly recognize complex familiar objects -- such as words -- but in fact relies on the detection of smaller elements -- features -- and only then recognizes the object of which they are the parts.

Just as modern radios suppress static, our eye suppresses the ’static’ of countless weak features that would otherwise besiege us. Pelli and Farell show that this hush comes at the cost of reduced efficiency in seeing complex objects like words.

"One of the interesting aspects of these findings," says Prof. Pelli, "is their counterintuitive character. Readers feel that they are reading whole words, but our research shows that vision has a bottleneck, and must independently detect simple features in order to see anything. Everything we see is a pattern of features. Even after we read millions of three-letter words, the’s, and’s, and but’s are still just patterns of features. We never learn to recognize them as single features."

Shonna Keogan | EurekAlert!
Further information:
http://www.nyu.edu/

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>