Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birth of a neuron: Imaging technique tracks nervous systemgrowth and repair, Cornell-Harvard group reports

12.06.2003


A biomedical-imaging technique that would highlight the cytoskeletal infrastructure of nerve cells and map the nervous system as it develops and struggles to repair itself has been proposed by biophysics researchers at Cornell and Harvard universities.

Reporting in Proceedings of the National Academy of Sciences (PNAS June 10, 2003) , the researchers say that besides the new imaging technique’s obvious applications in studying the dynamics of nervous system development, it could answer the puzzle about which errant pathways initiate damage to brain cells, a key question about the onset of Alzheimer’s disease.

The PNAS report, "Uniform polarity microtubule assemblies imaged in native brain tissue by second harmonic generation microscopy," is the work of Watt W. Webb, professor of applied physics at Cornell and leader of the research program. His laboratory collaborators in the School of Applied and Engineering Physics are graduate students Daniel A. Dombeck and Harshad D. Vishwasrao and research associate Karl A. Kasischke, M.D. Martin Ingelsson and Bradley T. Hyman of Massachusetts General Hospital, the largest teaching hospital of Harvard Medical School, also are collaborators.



In developing nerve cells, microtubules are the pioneering extensions from the cell body that grow to form two kinds of processes: the dendrites (branches that collect and conduct impulses inward to the cell body) and the axon (the single, longer process that conducts impulses away from the neuron cell body). Microtubules, made of tiny polymers, are a major part of the cellular cytoskeleton and are responsible for mechanical support. The proposed imaging procedure capitalizes on a structural polarity that exists in the polymers, making the characteristics at one end different from the other.

The researchers predict that their system to image microtubule polarity deep within living brain tissue could expedite the study of neuronal development and repair, the dynamics of migrating cells and neurodegenerative disease.

"Never before has there been a satisfactory way of detecting polarity in microtubule assemblies in living brain tissue," says Webb. "Now we can follow the development of microtubules in vivo to see how architectural changes are occurring in nerve cells or in any other living cells where microtubules are found."

Dombeck says that changes in microtubule polarity are the key to how neurons grow and find their orientation in the developing brain. The cellular processes are depicted in brilliant detail by the new imaging technique, he notes, because of a quantum physical optics phenomenon called second harmonic generation.

"In sound waves, we can hear the second harmonic of a vibrating guitar string when the guitar body resonates and produces a tone twice as high in pitch as the original tone. The same thing happens with light waves -- although no one knew it until lasers were invented -- when a laser beam hits certain kinds of materials in our bodies," says Dombeck. "Sometimes a second harmonic is generated at exactly twice the energy, or half the wavelength, of the original light. Microtubules with uniform polarity generate a second harmonic, but microtubules with mixed polarity don’t. We get destructive interference instead, so that axons light up, and dendrites and everything else with nonuniform polarity in the microtubules stay dark."

To demonstrate the imaging system, the biophysicists depicted axon bundles and individual axons in rat hippocampal brain tissue as well as axons growing from cell bodies in culture dishes. Other demonstrations in non-neuronal structures showed microtubules in the mitotic spindles of dividing cells, and microtubule-based cilia that line the inner walls of the aquaductus cerebri and waggle to propel fluid through the brainstem. When individual, successive images are assembled into a video, cell division can be followed and the fluid-propelling motion of brainstem duct cilia can be studied in detail.

At the most fundamental level, imaging studies might explain the role of microtubule-polarity in developing brain tissue, helping to decipher how the brain becomes "wired." The technique may even reveal changes in microtubule polarity, showing where, when and why neurofilamentary tangles of axons form with precipitates of tau protein in the brains of Alzheimer’s patients, giving the new technique clinical significance, Webb says.

Funding support for the microtubule polarity studies came from the National Science Foundation, National Institutes of Health, Hellmuth Hertz Foundation, Wenner-Gran Foundation and the Alzheimer’s Association.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/June03/microtubule.hrs.html
http://www.drbio.cornell.edu/drbio.html
http://www.aep.cornell.edu/eng10_page.cfm

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>