Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Health Network researchers discover new class of human stem cells

10.06.2003


Cells show promise for cancer and transplant patients because of rapid growth in bone marrow



Scientists with University Health Network have discovered a new class of human stem cells that rapidly grow when implanted in the bone marrow of mice. The findings, available today in an advance on-line publication of the international scientific journal Nature Medicine, are a major advancement in human stem cell research with possible significant clinical implications for designing more effective cancer therapies.

“This is an exciting discovery because for the first time we have found human stem cells that rapidly rebuild a blood system,” said Dr. John Dick, lead author of the study, senior scientist with UHN, and a professor in the University of Toronto’s Department of Molecular and Medical Genetics. “The potential is that it may allow transplant patients to quickly regain their blood cells, which are critical to their immune system.”


The scientists identified the new stem cells after injecting a batch of stem cells directly into the bone of mice, instead of the traditional method of intravenous injection into the blood stream. They observed this new subpopulation of stem cells rapidly repopulate the blood-producing system of the mice, produced high levels of blood cells within the first week or two after transplant, which is one- to two-weeks earlier than the normal rate. This discovery builds on the Dr. Dick’s pioneering method of studying human stem cells by transplanting them into immunodeficient mice which will not reject the human cells.

The discovery could have far reaching implications for cancer and transplant patients whose immune systems are weakened by their treatment. These patients are very vulnerable to infections, usually for as long as three weeks after the treatment, until their blood system recovers enough to fight off infections.

“If these new human stem cells rebuild the blood system of a person as they have in the mice in this study, it may significantly reduce the time a patient is at risk,” said Dr. Armand Keating, Chief of Medical Oncology at Princess Margaret Hospital.

Further study is needed to see if the new stem cells can be separated in larger batches and to refine the method of delivery. “Implanting stem cells directly into bone is a more complex and difficult procedure than the traditional intravenous method,” said Dr. Dick.

The research was supported by grants from the Association pour la Recherche contre le Cancer, the Stem Cell Network, one of Canada’s Networks of Centres of Excellence, the Canadian Cancer Society, the Canadian Genetic Diseases Network, and the Canadian Institutes of Health Research.

University Health Network is a major landmark in Canada’s healthcare system, and a teaching hospital of the University of Toronto. Building on the strengths and reputation of each of our three hospitals, Toronto General Hospital, Toronto Western Hospital and Princess Margaret Hospital, UHN brings together the talent and resources needed to achieve global impact and provide exemplary patient care, research and education.

For more information, please contact :
Vince Rice, Communications Specialist, Public Affairs,
University Health Network 416.946.4501 ext 5771

Vince Rice | University of Toronto
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>