Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Health Network researchers discover new class of human stem cells

10.06.2003


Cells show promise for cancer and transplant patients because of rapid growth in bone marrow



Scientists with University Health Network have discovered a new class of human stem cells that rapidly grow when implanted in the bone marrow of mice. The findings, available today in an advance on-line publication of the international scientific journal Nature Medicine, are a major advancement in human stem cell research with possible significant clinical implications for designing more effective cancer therapies.

“This is an exciting discovery because for the first time we have found human stem cells that rapidly rebuild a blood system,” said Dr. John Dick, lead author of the study, senior scientist with UHN, and a professor in the University of Toronto’s Department of Molecular and Medical Genetics. “The potential is that it may allow transplant patients to quickly regain their blood cells, which are critical to their immune system.”


The scientists identified the new stem cells after injecting a batch of stem cells directly into the bone of mice, instead of the traditional method of intravenous injection into the blood stream. They observed this new subpopulation of stem cells rapidly repopulate the blood-producing system of the mice, produced high levels of blood cells within the first week or two after transplant, which is one- to two-weeks earlier than the normal rate. This discovery builds on the Dr. Dick’s pioneering method of studying human stem cells by transplanting them into immunodeficient mice which will not reject the human cells.

The discovery could have far reaching implications for cancer and transplant patients whose immune systems are weakened by their treatment. These patients are very vulnerable to infections, usually for as long as three weeks after the treatment, until their blood system recovers enough to fight off infections.

“If these new human stem cells rebuild the blood system of a person as they have in the mice in this study, it may significantly reduce the time a patient is at risk,” said Dr. Armand Keating, Chief of Medical Oncology at Princess Margaret Hospital.

Further study is needed to see if the new stem cells can be separated in larger batches and to refine the method of delivery. “Implanting stem cells directly into bone is a more complex and difficult procedure than the traditional intravenous method,” said Dr. Dick.

The research was supported by grants from the Association pour la Recherche contre le Cancer, the Stem Cell Network, one of Canada’s Networks of Centres of Excellence, the Canadian Cancer Society, the Canadian Genetic Diseases Network, and the Canadian Institutes of Health Research.

University Health Network is a major landmark in Canada’s healthcare system, and a teaching hospital of the University of Toronto. Building on the strengths and reputation of each of our three hospitals, Toronto General Hospital, Toronto Western Hospital and Princess Margaret Hospital, UHN brings together the talent and resources needed to achieve global impact and provide exemplary patient care, research and education.

For more information, please contact :
Vince Rice, Communications Specialist, Public Affairs,
University Health Network 416.946.4501 ext 5771

Vince Rice | University of Toronto
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>