Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers offer new theories about memory

06.06.2003


For decades, scientists have disagreed about the way the brain gathers memories, developing two apparently contradictory concepts. But newly published research by a team of scientists at Rutgers-Newark’s Center for Molecular and Behavioral Neuroscience (CMBN) indicates that both models of memory may be partially correct – and that resolving this conflict could lead to new approaches for the treatment of memory disorders such as Alzheimer’s Disease.



The dispute has centered on how the hippocampus – a structure deep inside the brain – processes new information from the senses and stores it. Some researchers – such as Mark Gluck and Catherine Myers, co-directors of the Memory Disorders Project at the CMBN – have been proponents of "incremental memory," viewing the acquisition of memory as a learning process that occurs over time.

"If you see thunder and lightning occur together once, that may be seen as a coincidence," Myers observed. "But the more often you see them happen at the same time, the more likely you are to remember them as related parts of one event."


Other researchers, such as Martijn Meeter, also with the CMBN, have focused on "episodic memory," which is more like memorization. This model argues that "an event only has to occur once and you’ll remember it," Myers said. "If someone tells you a name, you may not remember it for a long time, but you will remember it initially at least." More dramatic events tend to be stored in long-term memory most easily. But Gluck, Myers and Meeter are developing a computer model that suggests the two methods of storing memory work together, and present their novel ideas in a paper published in the June issue of the journal Trends in Cognitive Science. Research using new classes of drugs that affect specific portions of a laboratory rat’s hippocampus and the region around it with greater accuracy has led the Rutgers-Newark team to propose a new interpretation of how the brain organizes all the sensory input that becomes memories.

That input goes through a kind of assembly line as the brain gathers it and directs it to the hippocampus, Myers said. Before reaching the hippocampus itself, the information all passes through a structure adjacent to the hippocampus called the entorhinal cortex for processing. The two parts of the brain lie side by side, resembling two halves of a hotdog bun. The new paper by the Rutgers-Newark investigative team floats the possibility that the entorhinal cortex – part of the "hippocampal region" but not part of the hippocampus itself – handles incremental learning. The main task of the hippocampus may be storing episodic memory.

"Understanding how the entorhinal cortex differs in function from the hippocampus is a hugely important and timely problem in the neurobiology of memory," Gluck said. "The entorhinal cortex is among the very first brain regions that are damaged in the earliest stages of Alzheimer’s Disease, so understanding it is crucial to measuring the effectiveness of novel drugs to fight AD."

Until very recently, write the researchers, only broad generalizations could be made about how memory was processed in the general hippocampal region. When humans suffer brain injuries, note the Rutgers-Newark scientists in their paper, "the damage is seldom limited to a single brain structure." As a result, some memory functions long assumed to take place in the hippocampus alone may occur in surrounding parts of the brain, such as the entorhinal cortex.

A coordinated effort between different portions of the brain, taken as a whole, may contribute to what we think of as memory, Myers observed. "It’s a team, and everyone is doing a specialized job," she said. She likened much previous research to the poem The Blind Men and the Elephant, wherein each of six men is right about the portion of the elephant that he is touching but is unable to form a comprehensive understanding of the animal as a whole.

"Everyone has been so caught up in his or her own world that everyone has been right on one component, but has not been able to take in the larger picture," Myers said.


For more information on Rutgers-Newark’s Memory Disorders Project, go to www.memory.rutgers.edu or contact the researchers at gluck@pavlov.rutgers.edu and myers@pavlov.rutgers.edu. Keep up with the latest developments in the field of neurobiological memory research in the free newsletter and Webzine called Memory Loss and the Brain, published by Gluck and Myers (www.memorylossonline.com).

Mike Sutton | EurekAlert!
Further information:
http://www.memory.rutgers.edu
http://www.memorylossonline.com

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>