Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloning embryos from cancer cells

04.06.2003


St. Jude researchers say reprogrammed nucleus model could offer valuable clues to how certain influencing factors combine with DNA mutations to cause tumors



Nuclei removed from mouse brain tumor cells and transplanted into mouse eggs whose own nuclei have been removed, give rise to cloned embryos with normal tissues, even though the mutations causing the cancer are still present. This research, from scientists at St. Jude Children’s Research Hospital, appears in the June 1 issue of Cancer Research.

The finding demonstrates that the cancerous state can be reversed by reprogramming the genetic material underlying the cancer, according to James Morgan, Ph.D., a member of the St. Jude Department of Developmental Neurobiology, and lead author of the study. The findings also indicate that genetic mutations alone are not always sufficient to cause a cell to become cancerous.


“Specifically, it shows that so-called epigenetic factors are key elements in the development and maintenance of tumors,” Morgan said.

Epigenetic factors are those that influence the cell’s behavior. Examples include environmental effects and chemical modification.

“The concept of epigenetic factors having a role in cancer is already largely accepted,” Morgan said. “In fact, it’s already known that epigenetic alterations of chromosomes can cause certain rare forms of cancer. And some anti-cancer agents actually target epigenetic changes. But this is the first formal proof of the theory in a living animal.”

Unlike mutations, epigenetic modifications of DNA are potentially reversible molecular events that cause changes in gene expression. Some genes that help prevent the development of cancer (e.g., tumor suppressor genes) can be targets of epigenetic factors. The inactivation of such a gene might make the DNA more vulnerable to developing a cancer-causing mutation.

The St. Jude researchers used nuclei from mouse medulloblastoma cells to create the clones. Medulloblastomas are brain tumors that tend to spread to the spinal cord. They account for about 20 percent of childhood brain tumors and most often occur in children under ten years of age.

The team, led by Morgan and department chair Tom Curran, Ph.D., placed nuclei from medulloblastoma cells into mouse eggs whose own DNA had been removed.

“Since the embryos did not develop tumors, we conclude that the cancerous properties were removed by reprogramming,” Morgan said.

“The use of mouse eggs to reprogram cancer cell DNA represents a new strategy for investigating the molecular basis of cancer,” Curran said. “By studying this model we hope to identify which epigenetic factors may contribute to this form of brain tumor. In addition, it also gives us a valuable tool for testing new therapies.”

Other authors of the study include Leyi Li, Michele Connelly and Cynthia Wetmore.


###
This work was supported in part by a National Institute of Health (NIH) Cancer Center Support CORE grant, ALSAC, the Pediatric Brain Tumor Foundation and NIH grants.

St Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>