Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical turns stem cells into neurons say scientists at Scripps Research Institute

03.06.2003


A group of researchers from The Scripps Research Institute (TSRI) and the Genomics Institute of the Novartis Research Foundation (GNF) have identified a small chemical molecule that controls the fate of embryonic stem cells.



"We found molecules that can direct the embryonic stem cells to [become] neurons," says Sheng Ding, who recently completed his Ph.D. work at TSRI and is becoming an assistant professor in the chemistry department. Ding is the lead author on the study, which is described in an upcoming issue of the journal Proceedings of the National Academy of Sciences.

"This is an important step in our efforts to understand how to modulate stem cell proliferation and fate," says Peter Schultz, Ph.D., TSRI professor of chemistry and Scripps Family Chair of TSRI’s Skaggs Institute for Chemical Biology.


The Promise of Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types--potentially providing doctors with the ability to regenerate cells that have been permanently lost by a patient.

For instance, the damage of neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. Another example is Type 1 diabetes, an autoimmune condition in which pancreatic islet cells are destroyed by the body’s immune system. Because stem cells have the power to differentiate into islet cells, stem cell therapy could potentially cure this chronic condition.

However bright this promise, many barriers must be overcome before stem cells can be used in medicine. Scientists have yet to understand the natural signaling mechanisms that control stem cell fate and to develop ways to manipulate these controls.

"We still have much to learn about how to direct stem cells to specific lineages," says Ding.

In order to address this problem, Schultz and Ding sought to find small chemical molecules that could permit precise control over the fate of pluripotent mouse embryonic stem cells--which, like human embryonic stem cells, have the ability to differentiate into all cell types.

The scientists screened some 50,000 small molecules from a combinatorial small molecule library that they synthesized at GNF. Just as a common library is filled with different books, this combinatorial library is filled with different small organic compounds.

From this assortment, Schultz and Ding designed a method to identify molecules able to differentiate the cells into neurons. They engineered embryonal carcinoma (EC) cells with a reporter gene encoding a protein called luciferase, and they inserted this luciferase gene downstream of the promoter sequence of a gene that is only expressed in neuronal cells. Then they placed these EC cells into separate wells and added different chemicals from the library to each. If the engineered EC cells in any particular well were induced to become neurons, the neurons would express luciferase--which can convert a non-luminescent substrate to a luminescent product. This product makes that well easy to detect from tens of thousands of other wells with GNF’s state-of-the-art high-throughput screening equipment.

Once they found some cells they believed to be neurons by treatment with certain small molecules, the scientists used more rigorous assays to confirm this, including staining the cells for characteristic markers and examining the shape of individual cells under the microscope. Neurons have a characteristic round soma body and asymmetric multiple processes.

In the end, Schultz and Ding found a number of molecules that were able to induce neuronal differentiation, and they chose one, called TWS119, for further studies.

When they examined the mechanism of TWS119 in detail, they found that it binds to a cellular kinase enzyme called glycogen synthase kinase-3beta (GSK-3beta). This is a multifunctional "signaling" enzyme involved in a number of physiological signaling processes whereby it modulates other enzymes by attaching a phosphate group to them.

The fact that modulating GSK-3beta leads the cells to become neurons reveals basic information on the complicated signaling cascade that turns a stem cell into a neuron. And the fact that TWS119 modulates the activity of GSK-3beta suggests that TWS119 is likely to provide new insights into the molecular mechanism that controls stem cell fate, and may ultimately be useful to in vivo stem cell therapy.

Schultz and Ding are still working on describing the exact mechanism whereby this binding directs the cell to become a neuron.


The article, "Synthetic Small Molecules that Control Stem Cell Fate" is authored by Sheng Ding, Tom Y.H. Wu, Achim Brinker, Eric C. Peters, Wooyoung Hur, Nathanael S. Gray, and Peter G. Schultz and will be available online next week at: http://www.pnas.org/cgi/10.1073/pnas.0732087100. The article will also be published in an upcoming issue of the journal Proceedings of the National Academy of Sciences.

This work was supported by The Skaggs Institute for Research, the Novartis Research Foundation, a Howard Hughes Medical Institute predoctoral fellowship, and a Humboldt Foundation postdoctoral fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/
http://www.pnas.org/cgi/10.1073/pnas.0732087100

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>