Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new RNAi knockdown technology

02.06.2003


Scientists from the RIKEN Tsukuba Institute (Japan) have developed a valuable new experimental system for tissue-specific RNAi knockdown in mammalian cells and organisms – a discovery that will markedly advance the functional characterization of genes involved in development and disease.



Discovered in the late nineties, RNA intereference (RNAi) refers to the introduction of double-stranded RNA (dsRNA) into a cell, where it induces the degradation of complementary mRNA, and thereby suppresses gene expression. RNAi has proven to be a powerful tool in the elucidation of gene function in organisms ranging from worms, to plants and fruit flies.

However, the use of RNAi in mammals has been complicated by the antiviral response of mammalian cells to dsRNA. The presence of foreign dsRNA in a mammalian cell initiates the so-called "interferon response:" the non-specific degradation of mRNA, and ensuing death of the cell. Mammalian RNAi researchers have undertaken a few different routes to avoid eliciting the interferon response, and while some have been successful, none have been able to accomplish it in a tissue-specific manner. Until now.


As published in the June 1 issue of Genes & Development, Dr. Shunsuke Ishii and colleagues have constructed a new RNAi vector (a vehicle to introduce foreign RNA into a cell), which both side steps the interferon response and allows for the tissue-specific suppression of gene expression. This vector, called pDECAP, represents a dramatic improvement over current RNAi transgenic technology.

As Dr. Ishii explains, "In the RNAi transgenic systems developed so far, small hairpin-type RNA is expressed from the RNA polymerase III promoter or the virus promoter. However, these systems cannot be utilized to knockdown gene function in a tissue-specific manner, because these promoters are active in all types of cells. In our system, the RNA polymerase II promoter is utilized to express hairpin-type double-strand RNA (dsRNA). Therefore, our system can be used to generate the tissue-specific knockdown mice."

The pDECAP vector expresses dsRNA from an RNA polymerase II promoter, which can be actived in specific cell types. Therefore, Dr. Ishii and colleagues can pick and choose which tissues that they want to knockdown gene function in. To avoid the interferon response, Dr. Ishii and colleagues engineered the vector to transcribe dsRNA that lacks the sequences needed to export it from the nucleus into the cytosol. Instead, pDECAP-expressed dsRNA is sequestered in the nucleus, where it is processed into small interfering RNAs (siRNAs). These siRNAs are then released into the cytosol, where they direct the degradation of target mRNA without eliciting the interferon response.

Dr. Ishii and colleagues used the pDECAP system to suppress expression of the Ski oncogene in mice. These Ski-knockdown mice largely recapitulate the mutant phenotype of traditional Ski-knockout mice (in which the Ski gene has been deleted through homologous recombination of embryonic stem cells), suggesting that Dr. Ishii’s new system provides an efficient alternative to traditional mouse knockouts in the exploration of gene function.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>