Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast genomes reveal new sites of gene control

30.05.2003


Researchers at Washington University School of Medicine in St. Louis have begun unraveling the network of genes and proteins that regulate the lives of cells. The investigators compared the genome of the yeast Saccharomyces cerevisiae (S. cerevisiae) to those of five other yeast species to identify all the locations at which molecules known as regulatory proteins attach to DNA to turn genes on and off. The study is published in the May 30 issue of the journal Science.



Among the many potential sites of gene regulation, 79 were predicted to be definitive new regulatory sites. The investigators also discovered 43 new genes and determined that 515 suspected genes are not genes at all. The findings revised the estimated number of genes in the S. cerevisiae genome from 6,331 to 5,773.

"This is the first step in understanding the gene-regulation network in a simple cell," says principal investigator Mark Johnston, Ph.D., professor of genetics and interim chair of genetics. "This work also will provide guidelines for analyzing the regulatory network of human cells, which will be a much more complex task."


Regulatory sequences are important, Johnston notes, because they are the basis of development. For example, a liver cell differs from a brain cell not because they have different genes—both cells have the same set of genes—but because of the genes they use. And that’s determined by the regulatory sequences that activate one set of genes in the liver and another set in the brain. A variety of diseases, including cancer, are caused by problems in gene regulation.

Identifying gene regulatory sites is not easy, however. These regions serve as docking sites for DNA binding proteins that turn the gene on or off. They lack the typical DNA patterns that help scientists recognize the body of the gene, which contains information about the structure of a protein.

Johnston and his colleagues compared the genomes of S. cerevisiae to five other yeast species, hypothesizing that the regions that were most alike in all six would be potential regulatory sites.

The investigators found about 8,000 of these conserved sites, about one-third of which already were known regulatory sequences. After eliminating the known sites from the total, the investigators searched for other evidence that these sites are functional, and pinpointed 79 sites located within or near genes which are excellent candidates for new regulatory sequences.

The team will is now refining the number of sites by determining which yeast regulatory proteins bind to the them.

"Now," Johnston says, "we can begin tackling the really interesting question: how a relatively small number of regulatory proteins coordinate the activity of more than 5,700 genes to maintain a healthy, growing yeast cell."


Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science, May 30, 2003.

Funding from the National Institute of General Sciences supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>