Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study suggests mammoth evolutionary change

22.05.2003


The white-footed mouse
Credit: Jim Schulz, Brookfield Zoo


A study of a common wild mouse by two University of Illinois at Chicago biologists has found evidence of dramatic evolutionary change in a span of just 150 years, suggesting genetic evolution can occur a lot faster than many had thought possible.
The findings are the first report of such quick evolution in a mammal and appear in the May 22 issue of the journal Nature.

Oliver Pergams, a conservation biology researcher with the Chicago Zoological Society in Brookfield, Ill. and visiting research assistant professor at UIC, conducted the research as his Ph.D. thesis project at UIC with Dennis Nyberg, associate professor of biology.


Pergams’ study began as a comparison of the genetics of two mice common to the Chicago region -- the white-footed mouse and the prairie deer mouse. But the search for historical samples quickly showed the white-footed mouse had squeezed out the prairie deer mouse from its dominant position, diminishing the samples needed to do a comparative study, so Pergams and Nyberg focused attention on the white-footed mouse.

"This intensified focus resulted in our discovery of rapid evolution," said Pergams. "It was a great surprise. We were simply trying to quantify the amount of genetic variation over time, not show evolution."

The researchers analyzed DNA samples taken from 56 museum specimens dating as far back as 1855, along with 52 recently captured mice from local forest preserves and state parks. Wayne Barnes, professor of biochemistry and molecular biophysics at the Washington University in St. Louis School of Medicine, assisted in analyzing the DNA.

The changes in gene sequence frequencies were dramatic, Pergams said, across the three 50-year intervals studied.

Only one of the mice from the latest period had the same DNA sequence as the most common sequence among the mice collected before 1950. The first mouse with the sequence currently common was captured back in 1906 at Volo Bog, some 45 miles northwest of Chicago. That discovery prompted Pergams to get all the museum specimens that were collected in Illinois’ Cook and Lake counties.

The researchers used DNA taken not from the nucleus, but from mitochondria, the power plants of the cell. Each cell contains many mitochondria, but only one nucleus.

"If you are working with very degraded, ancient DNA like that from museum skins, you are way ahead using this DNA with lots of copies," said Pergams. Mitochondrial DNA evolves much more rapidly than nuclear DNA, he said, though this evolution was previously thought only to occur over thousands of years.

"We did not expect to find the rapid, consistent and directional change that we did find," he said.

While evidence of such fast change has been cited in studies of fruit flies, this is the first reported study to document such quick evolution in a mammal.

What may account for this change?

"We think it likely that the new gene sequence was either unconditionally advantageous, or that it was advantageous relative to environmental changes caused by humans," Pergams said.

"Settlers may have brought in mice with the favorable gene that were able to out-compete mice with the native variant. A less likely possibility is that mice with these new gene sequences were already present, and that dramatic changes that humans caused in the environment allowed the new gene sequence to be selectively advantageous."

Since all the mice studied were caught in forest preserves and parks, Pergams and Nyberg consider the second alternative unlikely. Future studies should reveal if the favorable gene is in older mouse specimens held by museums in other parts of the country.

In any event, Pergams thinks this research may have broad implications.

"It suggests that humans are a likely cause of such rapid evolution," Pergams said, "and that much of current phylogenetic and phylogeographic methodology may be flawed because it does not take the possibility of rapid mitochondrial DNA evolution into account."

"It also suggests that the ’molecular clock’ may sometimes, and sporadically, tick blindingly fast."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>