Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene may produce drought-resistant plants

22.05.2003


The identification and duplication of a gene that controls production of plants’ outermost protective coating may allow Purdue University researchers to create crops with increased drought resistance.


Research conducted at Purdue University by Matt Jenks with Arabidopsis plants may lead to the development of more drought-resistant plants. Jenks is an assistant professor of horticulture. (Purdue Agricultural Communication photo/Tom Campbell)



Scientists cloned the gene WAX2 after they discovered a fast-wilting mutant of Arabidopsis, a commonly used experimental plant. The gene is directly associated with the synthesis of the protective layer of plants, called the cuticle, and its contained waxes, according to the study published in the May issue of The Plant Cell.

The difference in the mutant Arabidopsis when compared to a wild-type, or normal, plant is the plants’ ability to retain water. This is apparently because the mutation, called wax2, has a different cuticle structure than found in a plant that has the normal gene, WAX2.


"If we can alter the expression of the WAX2 gene, we might be able to produce a cuticle that is thicker or more rigid so that it’s less permeable to water loss," said Matt Jenks, associate professor of horticulture and landscape architecture.

Manipulating what the gene does or when it is turned on could result in plants better able to survive in arid conditions.

Jenks and his research team isolated more than 20 mutant Arabidopsis plants that showed alterations in the amount of wax they produced. Of these, only a few lost water more quickly than the wild type.

"The mutant wax2 was the most drought susceptible," Jenks said. "Unlike previously described wax mutants, removal of the WAX2 gene product causes dramatic alteration in the cuticle membrane, and the plant no longer is able to prevent water loss."

Jenks said he believes that when the cuticle membrane structure is changed because of the wax2 malfunction of the WAX2 gene, the protective wax within the cuticle membrane is displaced, affecting transpiration. Transpiration is how plants emit waste matter though their leaf surfaces.

"It’s likely that the cuticle meshwork is disrupted so the wax molecules no longer stack properly within the cuticle," he said. "The plant becomes very permeable to water and overall is less able to withstand drought conditions."

The study using the mutant wax2 also revealed unique interactions between the cuticle and other aspects of plant development.

The researchers found that the wax2 mutant has fewer stomata, the small holes in the plant’s surface that regulate water loss. This mutant also has a male sterility problem that prevents pollen from activating the stigma, where reproduction begins.

"The cloning of WAX2 is providing evidence that lipids in the cuticle may serve as signals that control how plants develop," Jenks said. "Lipids in animals are known to play important roles in regulating development, but lipid signaling in plants is not well understood."

Lipids are water-insoluble molecules that aid in various cell metabolic functions.

"We want to understand the genetics and biochemistry of plant cuticle production so that ultimately we may be able to modify economically important crops to grow better during drought" he said.

The other authors of the study are postdoctoral student Xinbo Chen, visiting professor Xionglun Liu, and graduate students S. Mark Goodwin and Virginia Boroff, all of the Purdue Department of Horticulture and Landscape Architecture.

The U.S. Department of Agriculture National Research Initiative and Purdue University provided support for the research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@aes.purdue.edu

Source: Matthew Jenks, (765) 494-1332, jenks@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu;

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030521.Jenks.wax2.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.hort.purdue.edu/

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>