Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles and catalytic DNA produce colormetric lead sensor

15.05.2003


Detecting the presence of hazardous lead paint could become as simple as pressing a piece of paper against a wall and noting a color change.



Scientists at the University of Illinois at Urbana-Champaign have developed a highly sensitive and selective biosensor that functions in much the same fashion as a strip of litmus paper. The researchers report their discovery in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site. The colorimetric sensor is based upon DNA-gold nanoparticle chemistry, and could be used for sensing a variety of environmental contaminants.

Using gold nanoparticles laced with DNA, Illinois chemistry professor Yi Lu and graduate student Juewen Liu are able to hybridize the nanoparticles into aggregate clusters that have a characteristic blue color. In the presence of a specific metal ion, the catalytic DNA will break off individual gold nanoparticles, resulting in a dramatic color shift to red. The intensity of the color depends upon the initial concentration of contaminant metal ions.


By applying the DNA-gold nanoparticle solution to a substrate, the researchers can create a biosensor that functions in the same manner as litmus paper. "These simple colorimetric sensors eliminate the need for additional instrumentation, and are well suited for on-site, real-time detection and quantification," Lu said.

To obtain the necessary catalytic DNA for their biosensors, Lu and Liu use a combinatorial approach called in vitro selection. Simple and cost-effective, the selection process can sample a very large pool of DNA (up to 1,000 trillion molecules), amplify the desired sequence by the polymerase chain reaction and introduce mutations to improve performance.

While most DNA is double stranded, the catalytic DNA Lu and Liu use has a single strand that can wrap around like a protein. In that single strand, the researchers fashion a specific binding site -- a kind of pocket that can only accommodate the metal ion of choice.

"In addition to lead, the selection process can be customized to select catalytic DNA that would be active for other metal ions, such as mercury, cadmium and zinc," Lu said.

The dynamic response of the sensor solution can be tuned over a wide range by introducing inactive catalytic DNA into the mix, Lu said. Incorporating more of the inactive DNA will shift the sensor’s sensitivity to higher contaminant concentrations without saturation. By using various combinations of active and inactive catalytic DNA, the sensor could be packaged as a colorimetric array to detect different contaminant concentrations.

"There are many old houses around the world that still contain leaded paint," Lu said. "According to the U.S. Environmental Protection Agency, leaded paint test kits that are currently available have shown high rates of both false positive and false negative results when compared to laboratory results. Our catalytic DNA-gold nanoparticle sensor can overcome these shortcomings."

Lu is also working with colleagues at the National Science Foundation’s Nanoscale Science and Engineering Center for Directed Assembly of Nanostructures (a partnership among Illinois, the Rensselaer Polytechnic Institute and the Los Alamos National Laboratory) to further develop the biosensor technology. For example, Lu is working with Illinois collaborators Paul Braun and Gerard Wong to produce nanoparticles from different materials.

"Our ultimate goal is to develop a microchip array with different color schemes for simultaneously detecting many different metal ions," Lu said.

Funding was provided by the U.S. Department of Energy and the National Science Foundation.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>