Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of thyroxine transporter molecule shows how key hormone hitches a lift round body

14.05.2003


Findings may aid the development of drugs to treat thyroid disorders



Structural analysis has revealed for the first time how a key messenger in the body’s chemical communication system hooks up with one of the proteins that delivers it to sites of action in the body.

Using X-ray crystallography, scientists from Imperial College London and the University of Hawaii have identified the location of four binding sites on human serum albumin (HSA), the principal protein in blood plasma, to which the chemical messenger thyroxine attaches.


Thyroxine is the primary hormone released from the thyroid gland, and acts on nearly every cell in the body affecting important mechanisms that control, weight, energy level, memory and heart rate.

While HSA is not the major transporter of thyroxine, its quick and direct action provides the most ready supply of the hormone for use around the body.

The findings, which are published online this week in the Proceedings of the National Academy of Science, help to explain how thyroxine regulates metabolic processes and normal physical development, and may aid the development of drugs to treat thyroid disorders.

The structural information also sheds light on the molecular basis of a rare condition, familial dysalbuminemic hyperthyroxemia (FDH), which is caused by mutations in HSA. This harmless genetic disorder is often misdiagnosed as an overactive thyroid gland and treated inappropriately.

Dr Stephen Curry of Imperial’s Department of Biological Sciences and senior author of the study said:

“Our study provides a more complete understanding of how thyroxine binds to HSA. Previously the number and location of binding sites on HSA was not clear. This structural information can now be used to help design synthetic forms of thyroxine to treat thyroid disorders. It will allow more detailed analysis of how the two molecules interact in the body, which can be used to make more effective candidate drugs.”

HSA is the most abundant protein in the circulatory system. Its principal function is to transport fatty acids, but it is also one of three proteins that delivers thyroxine.

Levels of thyroxine circulating in the body are used as a biochemical indicator to help gauge how active the thyroid gland is. The researchers sought a better understanding of how the hormone binds to the proteins that transport it in order to improve diagnosis of the various thyroid disorders.

Together with colleagues in Hawaii, the Imperial team, who are the main academic research group in the world working on albumin structures, examined the crystallised structure of HSA bound to thyroxine under three different conditions: in the presence or absence of fatty acids and using mutant forms of HSA.

“The shape of the HSA-thyroxine complex alters dramatically when fatty acids bind to the protein,” explained Dr Curry. “The main difference is that when fatty acids are present, their binding creates a new binding site.

“This is an unprecedented example of the complex interplay between the binding of fatty acids and thyroxine to the protein. Although fatty acids and thyroxine compete with one another to bind to several sites on the protein, there is also an element of cooperation through the creation of an additional binding site for the hormone.

“The interaction between the FDH causing mutant forms of HSA and thyroxine increases the binding affinity between the two molecules 10 to 15 fold. People with this condition present with normal levels of thyroxine that is not bound to transporter proteins but when the total level of thyroxine is looked at it’s much higher. Our research will allow a more accurate diagnosis of this condition in the future.”

The research was supported by the American Heart Foundation, Hawaii Affiliate and the Biotechnology and Biological Sciences Research Council (UK).

Judith H Moore | alfa
Further information:
http://www.ic.ac.uk

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>