Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In potentially important discovery, scientists find two forms of genetic material chromatin

14.05.2003


Biologists have discovered what appear to be fundamental differences in the physical properties of the genetic material known as chromatin. Chromatin packages DNA into cells, and the scientists found the differences between chromatin that packages genes and the chromatin that packages DNA with regulatory or unknown functions.



The variation represents a previously unrecognized level of genomic organization and complexity, the scientists report, one that may exist in all cells with nuclei.

Made in yeast, the discovery offers broad potential uses, said Dr. Jason D. Lieb, a University of North Carolina at Chapel Hill biologist and a report author.


"For example, in pathology laboratories, differences in chromatin shape and structure in mammalian cells are routinely determined by staining tissues and observing them under a microscope," said Lieb, also a Carolina Center for the Genome Sciences researcher. "This is an important assay used to identify specific cell types and malignancies. It is possible that a detailed genomic view of these variations, provided by the method we describe in our paper, could be used to diagnose and sub-type cancer and other diseases."

It also could be an important tool for assigning functions to subsections of the genome, particularly for finding active genes, which remains a difficult problem, he said.

The report will appear online this week and in the May 27 issue of the Proceedings of the National Academy of Sciences. Other authors, all at Stanford University, are Drs. Peter L. Nagy and Michael L. Cleary of pathology and Dr. Patrick O. Brown of biochemistry.

"If the DNA from a single human chromosome were stretched and measured end-to-end, it would extend to over half an inch in length," Lieb said. "Our cells are much, much smaller than that, of course, and in order to fit inside the cell’s nucleus, which is even smaller, DNA must be compacted about 1,000-fold relative to its stretched-out length. This compaction is achieved by coiling and folding the DNA around proteins."

Together, he said, DNA and proteins are called chromatin, and it is chromatin that one sees in the familiar microscopic images of chromosomes. The basic unit of chromatin is called the nucleosome, which is like a barrel, and DNA is wrapped around that barrel 1.7 times. Nucleosomes are made up of proteins called histones, which come in many different "flavors."

"They can be modified by chemical processes known as methylation, acetylation and phosphorylation at different positions," Lieb said. "It has become increasingly clear that specific combinations of histone modifications are linked to underlying gene activity."

Based on its emerging importance, the information stored in histones and their modifications has been dubbed the "histone code," he said.

Packaging DNA serves not only to compact it but also has a key role in determining if the genes are turned on or off, the scientist said. Packaging DNA into chromatin acts as a gatekeeper, determining which parts of the genome are accessible to regulatory proteins and which parts are off limits. Defects in the proteins that organize DNA lead to embryonic development defects due to their influence on underlying gene activity.

That the DNA sequence in the genome is organized into two broad classes, genes and non-protein coding regions -- sometimes called "junk DNA" -- has been known for a long time, Lieb said. Much less is known about how chromatin is organized along the underlying DNA. "We initially set out to investigate the global distribution of a particular ’flavor’ of one histone in yeast," he said. "In the procedure, we crosslinked, or fixed, the yeast with formaldehyde, and then later were to reverse those crosslinks with heat. We inadvertently omitted the reversal, a key step in the technique, however. "We found then that by using formaldehyde-crosslinked chromatin in a biochemical procedure normally used to separate all proteins from all DNA, we could instead separate yeast chromatin into two specific and functionally distinct parts."

The most striking aspect of the result, he said, is that local variation in chromatin composition and structure is extremely diverse and complex, yet the new studies reveal what appears to be a global pattern that systematically and simply demarcates sequences in a way that reflects their assigned role as genes or non-genes.

"This method, or a similar method, may be applicable to other organisms," Lieb said "Our approach has potential use as a tool for describing changes in chromatin structure that accompany different genetic, environmental, and disease states."


Note: Lieb can be reached at (919) 843-3228 or jlieb@bio.unc.edu
Contact: David Williamson (919) 962-8596


David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>