Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein folding hits a speed limit

08.05.2003


To carry out their functions, proteins must first fold into particular structures. How rapidly this process can occur has been both a source of debate and a roadblock to comparing protein folding theory and experiment.



Now, researchers at the University of Illinois at Urbana-Champaign have observed a protein that hit a speed limit when folding into its native state.

"Some of our proteins were folding as fast as they possibly could -- in only one or two microseconds," said Martin Gruebele, an Illinois professor of chemistry, physics and biophysics. A paper describing the work is to appear in the May 8 issue of the journal Nature.


To study protein folding at the speed limit, Gruebele and graduate student Wei Yuan Yang took a small protein and, by replacing some of the amino acids with others that improved the molecular interactions, made it fold faster. By the time they finished souping up their protein, it was folding nearly 1,000 times faster than normal.

The researchers then used a fast temperature-jump procedure to measure folding times with nanosecond resolution. To initiate the folding sequence, a solution of unfolded proteins was heated rapidly by a single pulse from an infrared laser. As the proteins twisted into their characteristic shapes, pulses from an ultraviolet laser caused some of the amino acids to fluoresce, revealing a time-sequence of folding events.

"Because a protein can follow more than one pathway to its native state, a variety of folding times will result," Gruebele said. "Plotting these times usually yields an exponential decay rate, because we are averaging over lots of molecules at once."

But, in addition to the normal exponential decay rate -- which did not exceed 10 microseconds -- Gruebele and Yang detected a much faster behavior that occurred on shorter time scales below one or two microseconds.

"That’s the speed limit," Gruebele said. "That’s the speed at which segments of the protein can physically change their positions -- the speed at which the protein would fold if it took the shortest possible path and made the least possible mistakes."

Before the experiment, time estimates ranged from as little as 10 nanoseconds to as long as 100 microseconds, Gruebele said. The right answer lay in the middle of that range.

"Of course, different proteins will have different speed limits," Gruebele said. "Longer molecules have to move around more to fold, and therefore have slower speed limits."

By modifying their protein to fold extremely fast over a reduced energy barrier, the researchers moved from timing macroscopic kinetics of protein folding over an energy barrier to timing the movement of the protein’s polymer chain. This molecular time scale is also where transition state theory breaks down.

"Because we can measure both the molecular time scale and the activated kinetics normally associated with transition state theory in one experiment, we can determine the activation energy on an absolute scale," Gruebele said. "This allows us to directly compare experimental and computational folding rates, and therefore calibrate the theory."


The Camille and Henry Dreyfus Foundation funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>