Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ingenium publishes groundbreaking research on genetic basis for motor neuron degeneration

02.05.2003


Results from Model-based functional genomics research provides new insight on the pathogenetic mechanism which causes diseases such as ALS



Ingenium Pharmaceuticals AG and a coalition of international research organizations announced today the publication in Science of research describing a fundamental discovery about the genetic and molecular basis for Motor Neuron Disease (MND), which includes Amyotrophic Lateral Sclerosis (ALS). The research explains a key pathogenetic mechanism of motor neuron degeneration, potentially opening new therapeutic avenues for treating motor neuron diseases including ALS, also known as Lou Gehrig’s Disease, the third most common neurodegenerative disease after Alzheimer’s and Parkinson’s. The research was conducted by Ingenium; University College London; the Queen Mary, University of London; UK Cancer Research; Munich Technical University; and the German National Research Center for Environment and Health. The UK work to find the gene mutation in the mouse was funded by the Motor Neurone Disease Association.

Today’s Science publication explains the mechanism for how widely-expressed genes can cause selective death of motor neurons, resulting in MND. By identifying two specific mutations in the same gene, the combined research group has produced a precise mammalian model of MND and described the pathogenetic link between specific gene mutations and selective, progressive degeneration of motor neurons. The research groups initially began their research with two distinct mouse models of late-onset MND and traced the genetic cause of the symptoms to specific point mutations in one gene, Dnchc1. Based on that discovery, the combined research team defined that the mutations in the Dnchc1 gene impaired axonal transport in the nerve cell, which specifically caused cell-death in motor neurons without affecting other cell types. This type of selective motor neuron degeneration is clinically similar on a cellular and organismal level to the human disease state seen in ALS and other motor neuron diseases.


"This publication is exciting as it provides a fundamental step toward explaining the pathobiology that results in MND, but it also, although at an early stage, could significantly impact our understanding of neurodegeneration in general," commented Dr. Gabriele Stumm, study co-author and Director of the Neurobiology Program at Ingenium. "The key discovery is that an inherited moderate impairment of nerve cell transport functions indeed can result in age dependent distinct motor neurodegeneration. This finding was enabled by Ingenium’s research approach and our valuable collaboration with the UCL and detected in the neuropathology laboratories of Prof. Joanne E. Martin, Queen Mary, University of London, and Prof. Juergen Schlegel, TU Munich."

"The pathogenetic link between specific gene mutations and selective, progressive degeneration of motor neurons has been the fundamental question in MND research," stated Professor Elizabeth Fisher of the Department of Neurodegenerative Disease at the National Hospital for Neurology & Neurosurgery at UCL. "Using similar technology, both research groups identified a mutated gene which provides an answer to this question."

The research teams used ethylnitrosourea (ENU) as a chemical mutagen to produce random point mutations in the mouse genome. The researchers identified a mouse phenotype that displayed progressive loss of muscle tone and locomotor ability, in a similar fashion to the ALS disease progression in humans, and the research groups performed positional cloning to locate the mutated gene responsible. The collaborative research began with the further biological analysis of the two models and the respective similarities produced by two different missense mutations. The findings reported are also important in demonstrating the value of random point mutation research in a model system since prior studies of the particular gene in knock-out animal models produced embryonic lethalities, with no discernable link to MND research.

"The ability to correlate a biological phenotype similar to a human disease state with a specific gene mutation is a powerful approach to discovering biological mechanisms that will have real importance in developing new therapeutics," said Dr. Michael C. Nehls, Chief Executive and Chief Scientific Officer of Ingenium. "The next step for Ingenium’s research is to demonstrate the application of this knowledge to the human disease and we are moving forward with this in collaboration with the University of Ulm and Professor Ludolph, a noted specialist in treating ALS patients."


###
The paper published in the May 2, 2003 issue, Vol. 300, Nr. 5620, pages 808-812 is entitled "Mutations in dynein link motor neuron degeneration to defects in retrograde transport". Contributing authors include M. Hafezparast, R. Klocke, C. Ruhrberg, A. Marquardt, A. Ahmad-Annuar, S. Bowen, G. Lalli, A. S. Witherden, H. Hummerich, S. Nicholson, P.J. Morgan, R. Oozageer, J. V. Priestley, S. Averill, V. R. King, S. Ball, J. Peters, T. Toda, A. Yamamoto, M. Augustin, D. Korthaus, S. Wattler, P. Wabnitz, C. Dickneite, S. Lampel, F. Boehme, G. Peraus, A. Popp, M. Rudelius, J. Schlegel, H. Fuchs, M. Hrabe de Angelis, G. Schiavo, D. T. Shima, A. P. Russ, G. Stumm, J. E. Martin and E. M.C. Fisher.

The basis of Ingenium’s business is its knowledge and expertise in generating the biological information critical to the discovery, validation and development of therapeutics. Ingenium’s biology-based target discovery technology, Deductive GenomicsTM, involves a functional genomics analysis of an entire mammalian genome to locate novel therapeutic entry points to treat disease. From the breadth of knowledge generated by Deductive GenomicsTM, Ingenium is currently advancing a pipeline of novel models and biologically validated drug targets in the areas of obesity, lipid metabolism, neurodegeneration and autoimmune disease. Ingenium has research partnership agreements with Elan Corporation, F. Hoffmann-La Roche Ltd., Sequenom Inc. and Lynkeus BioTech GmbH, in addition to numerous international academic collaborations. The company benefits from funding from premier investors, an experienced management team, top industry advisors and a growing patent portfolio.

Gretchen Schweitzer | EurekAlert!
Further information:
http://www.ingenium-ag.com/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>