Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A switch that makes a blood clot sticky found within the platelet membrane

02.05.2003


One key to platelet integrin receptor found in transmembrane region



Integrin receptors allow cells to attach to other cells and to connective tissue which is necessary to form tissues, organs, or even people, for that matter. Researchers at the University of Pennsylvania School of Medicine have demonstrated that a key to activating αIIbβ3, the integrin that allows platelets to form blood clots, can be found in the part of the molecule embedded within a platelet’s outer membrane.

The αIIbβ3 integrin, also known as the platelet fibrinogen receptor or GP IIb-IIIa, has been the focus of an entire class of blood-thinning drugs, called GPIIb-IIIa agonists. The Penn researchers findings, published in this week’s issue of Science, have implications for drugs created to thin the blood and, perhaps more broadly, offer an intriguing hint as to how integrins on cells throughout the body may function.


"The part of the GPIIb-IIIa molecule that is embedded in the fatty layers that constitute the platelet’s outer membrane can determine whether or not the integrin is activated, thereby making the platelet ’sticky,’" said Joel S. Bennett, MD, Professor in Penn’s Division of Hematology/Oncology within the Department of Medicine. "The transmembrane region, which was generally assumed to be just an anchor for keeping the integrin receptor in place, can be an activating switch for the entire molecule."

Once activated, the two subunits of GPIIb-IIIa that extend outside the cell can clasp the walls of a damaged blood vessel or a passing fibrinogen molecule ¡V much like a bobby pin can close around strands of hair ¡V thereby forming a normal blood clot or a pathologic thrombus. GPIIb-IIIa agonist drugs, such as ReoPro®, Integrilin®, and Aggrastat®, work by preventing activated GPIIb-IIIa from binding to other objects in the bloodstream.

Since it is a protein, GPIIb-IIIa is made up of amino acids, strung along in a specific sequence to give the protein its shape. Bennett and his colleagues were able to determine which amino acids are responsible for activating GPIIb-IIIa by substituting a ’wrong’ amino acid at spaces along the  protein chain and expressing the mutant protein in cells growing in culture. They found that the transmembrane portion of one of the GPIIb-IIIa subunits is responsible for responding to activation signals and, in return, causing groups of the activated integrin to cluster.

"Remarkably, these regions are evolutionarily conserved ¡V meaning the transmembrane region in GPIIb-IIIa is the same in apes or rabbits or mice as they are in humans," said Bennett. "That tells us that the sequences of the transmembrane region of integrins are important factors in how these proteins function."

Moreover, nearly every integrin has a different transmembrane region made up of a unique amino acid sequence. If the transmembrane regions of all integrins work on a similar scheme, it would provide a new paradigm for the function of integrins and other cell membrane proteins.

"Integrin receptors are more than just a cellular form of Velcro ¡V as integrins bind, they can also generate signals that command a cell to act, such as whether to divide or differentiate or to produce an important protein such as a gene transcription factor," said Bennett. "It will be interesting, and even medically important, to determine how these signals can be modulated."

Other scientists involved in the research paper described here include Renhao Li, Neal Mitra, Holly Gratkowski, Gaston Vilaire, Reustem Litvinov, Chandrasekaran Nagasami, John Weisel, James D. Lear, and William F. DeGrado from Penn.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>