Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One fig, one wasp? Not always!

28.04.2003


Contrary to prevailing wisdom concerning one of the most famous textbook examples of a tightly co-evolved mutualism, not every fig species is pollinated by its own unique wasp species. In this week’s Proceedings of the National Academy of Sciences, Drude Molbo, postdoctoral fellow at the Smithsonian Tropical Research Institute and collaborators report that two genetically distinct species of wasps are present in at least half of the fig species surveyed.



This new result forces a major reassessment of the vast majority of studies that have used figs as model systems. In one stroke, the findings undermine many current ideas concerning the stability and evolution of mutualisms, while simultaneously strengthening other critical parts of modern evolutionary theory. (sex allocation and local mate competition theory).

Wasps began to pollinate and co-evolve with figs 90 million years ago, even before continental drift separated Old and New World groups. There are over 750 recognized fig species. The diversity and ability to measure costs and benefits that each partner provides the other means that the fig-wasp system provides an ideal model for understanding what each partner stands to gain from a mutualistic relationship. In addition, fig wasps have been used extensively as model systems for testing sex ratio theories, adding significantly to our understanding of evolutionary processes. One of the key assumptions for both model systems has been that a unique wasp species pollinates each fig species.


Molbo developed nuclear microsatellite markers to test the sex ratio theory of local mate competition (Hamilton 1967, Herre 1985, 1989, West et al., 2001). But when she used these markers to genotype wasp offspring from different fig fruits, the results didn’t make sense. Molbo kept getting different sets of genotypes that had nothing in common with those of wasps that supposedly belonged to the same species.

On closer inspection, some figs hosted two cryptic species of pollinator wasp. Molbo´s analysis based on nuclear microsatellites matched perfectly with groupings based on mitochondrial genes sequenced by Carlos Machado (STRI and University of Arizona), which confirmed that cryptic wasps had evolved separately for more than 1.5 million years.

Some cryptic wasp species are actually sister species, i.e. they share the same ancestor and probably evolved within a single host fig species or very closely related species. However, genetically identical wasps may also be found on two different fig hosts, suggesting that new associations may also form from time to time. Overall, these findings indicate that even mutualistic relationships can be much more evolutionarily labile than has previously been appreciated.

This finding has important consequences for our understanding of sex ratio evolution and precision of adaptation. Using the molecular markers that Molbo developed, the collaborators found that the observed sex ratios of fig wasps broods actually comes closer to fitting theoretic predictions when multiple wasp species are considered. This finding signficantly strengthens support for one of the clearest examples of the qualitative and quantitative predictive power of modern evolutionary theory.


Ref. Cryptic species of fig pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation and precision of adaptation. Drude Molbo, Carlos Machado, Jan Sevenster, Laurent Keller and Allen Herre. Proceedings of the National Academy of Sciences. May 13, Vol 100, no 10 pp. 5867-5872.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is one of the world´s leading centers for research on the ecology, evolution and conservation of tropical organisms.


Dr. Drude Molbo | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>