Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researcher discovers melanoma causing gene

22.04.2003


Rutgers Associate Professor Suzie Chen has discovered a gene responsible for melanoma, the most aggressive form of malignant skin cancer. A paper describing the research by Chen and her colleagues at the National Human Genome Research Institute will be published online by Nature Genetics on April 21, and will appear subsequently in a print issue of the journal.



Melanoma may appear in places that never see sun, spread to other parts of the body and become lethal. This type of cancer is not generally responsive to chemotherapy. According to a report from the National Cancer Institute, in the United States the incidence rate of melanoma has more than doubled in the past 20 years.

Chen has been on the track of this gene since her 1995 arrival at Rutgers, The State University of New Jersey. Her research was conducted in the Susan Lehman Cullman Laboratory for Cancer Research at Rutgers’ Ernest Mario School of Pharmacy.


"I did not set out to do a melanoma study," said Chen. "All my life I have been interested in cell transformation and differentiation. In this case, I was investigating how a fat cell becomes a fat cell when I observed that one of the mice in my experiment developed pigmented tumors. Upon further characterization, these tumors were confirmed to be melanoma.

"After many years of work, we identified a gene that was involved in these skin abnormalities and went on to prove that it indeed causes melanoma in the mouse system," said Chen.

Surprisingly, the gene is not a known oncogene – one known to cause cancer – but one whose normal functions are in the brain.

Chen explained that the expression of a given gene, whether it is turned on or off, or when, is tightly regulated by many factors. "It is only in a melanocyte skin cell when the expression of this particular gene is turned on that it leads to the development of melanoma," said Chen. "While in the brain, where it is expressed normally, its functions are associated with learning and memory."

Chen and her collaborators took the next step in this scientific investigation using human biopsy tissues with various stages of melanoma. In more than one third of these human samples, they detected signs of the same aberrant gene expression seen in the laboratory animals that had melanoma. This confirmed that the gene involved in melanoma development in the mice is also implicated in some human melanomas. While there are typically many paths leading to cancer development, this is a breakthrough in pinpointing one of them that occurs in both animals and humans.

"We hope to use this knowledge we’ve gained to investigate better ways of treating the disease. Early detection is key in treating melanoma, but malignant melanoma does not normally respond well to conventional chemotherapy," said Chen. "We need to find more effective ways to treat the disease. The biggest problem we have is our inability to target the tumor cells. Most of the treatments available today affect normal cells, as well. With our understanding of at least one genetic factor in melanoma, we may now have the ability to design a new, more specific drug to target that gene or the protein it expresses," she concluded.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>