Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt and genes

14.04.2003


Mineral salts are essential for living organisms. To be precise, it is from these, living cells get their basic components, the ions. Common salt, for example, contains chloride and sodium ions which the cell uses to establish and maintain electrochemical balance with the environment.

In order to achieve sodium equilibrium in animal cells, for example, the external sodium concentration has to be ten times greater than the internal one. It is precisely due to this difference in concentration that the cells get their food from their environment. So, sodium equilibrium is fundamental to the life of animals.

These salt concentrations, so important to animals, are, however, detrimental to the majority of plants. In fact, the ion balance in cells is different for animals and plants and the sodium ion is more toxic for plants than for animals.



Nevertheless, in nature there exist plants which are well adapted to salts; examples are those found growing on the coastline and in saline marshes. These plants can live on saline soil and this means that their cells have an innate capacity to combat sodium ion toxicity.

Genes

The ability of these plants to adapt to a salt environment is defined by the gene regulators for ionic balance. These genes are not generally well known and thus their identification and characterisation would be extremely useful, for example, in obtaining plant species with a greater tolerance in saline conditions.

In the laboratory work carried out with these plants, the development of the research is determined by the lengthy growth cycles of the plants. Moreover, the identification of plant genes is not easy, due to their lengthy and complex genome. Nevertheless, a lot of plant genes appear in more simple living organisms. This is why, generally speaking, in order to identify and characterise plant genes, the genes in simple organisms are investigated, although subsequent verification has to be carried out with plants.

In the last decade scientists have based their research on genes which enhance salt tolerance using Saccharomyces cerevisiae yeast as a model. In fact, this micro-organism uses the same mechanism that plants use to maintain ionic balance.

Since then the Biochemical Laboratory at the University of the Basque Country in Donostia (San Sebastian), has been working on the genes which help this yeast to adapt to salty environments. Thus, using advanced molecular biology techniques, they have isolated and identified these genes. Finally, knowing how these genes minimise salt toxicity in this yeast, they have attempted to achieve the same effect in plants used for consumption.

In this work the researchers have been cooperating with foreign research teams and the results achieved have been highly interesting, improving the salt tolerance of two species in a substantial way.


Notes

Project director: Iñigo Fernandez de Larrinoa
Work-team: I. Mendizabal, M. Santos, I. Saldaña
Department: Applied Chemistry (laboratory of Biochemistry and Molecular Biology)
Faculty: Chemical Sciences(Donostia)

Garazi Andonegi | Basque research
Further information:
http://www.ehu.es

More articles from Life Sciences:

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

nachricht Bacteria may travel thousands of miles through the air globally
25.03.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>