Groundbreaking Research Shows Sugar to Trigger Growth

Clemson researcher part of discovery team

Science, a leading international research journal, reports today that a team of scientists, including Clemson University plant biochemist Brandon Moore, has found sugars not only serve as fuel for plants but also as signal compounds to genes critical to cell development and plant growth.

The research is considered to be groundbreaking, providing insights into the fundamental importance sugars play in both plants and animals. Scientists predict the findings will lead to new research on the role sugars have in human development and disorders, such as diabetes and obesity. For now, the research findings are expected to have more impact on agriculture, identifying new ways to improve crop yields.

“In plants, sugars are produced by photosynthesis. The sugars are then used to support all aspects of plant growth and development,” said Moore. “Our evidence proves that glucose functions in plants not only as a nutrient, but also as a signal compound that affects the expression of many different genes involved in most vital processes. These include genes that code for proteins related to seed germination, root, shoot, and leaf growth, flowering and aging. The regulation of gene expression by glucose and other sugars indicates that these nutritional molecules act also as hormones.”

The long-term goal of Moore’s research is to understand sugar sensing mechanisms.

“By examining the function of sugar sensors, identifying the components of the signal processes and determining the gene targets of sugar signaling, we can use our understanding of sugar control processes to manipulate specific targets related to crop yield,” said Moore.

Moore and his colleagues are working with a model species, Arabidopsis, a mustard plant growing in northern temperate climates worldwide. It is a plant whose genome has been completely sequenced. Knowing all of the genes present in an organism is a valuable tool for identifying all of the proteins that control a specific process.

“Many components and targets of glucose signaling are conserved among plants and animals. The recognition of the hormone function of glucose will influence the thinking of scientists and society about our understanding of the metabolic control of gene expression and our approach to solving some types of diabetes and related disorders in glucose metabolism,” said Moore.

Moore, 49, joined the Clemson faculty in Fall 2001, coming from Massachusetts General Hospital in Boston. He earned his doctorate from Washington State University at Pullman, Wash.

Media Contact

Peter Kent Clemson University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors