Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of proteins necessary for HIV release suggests possible new therapeutic targets

14.04.2003


Dr. Wesley Sundquist, professor of biochemistry at the University of Utah, will present at the Experimental Biology 2003 meeting in San Diego on his work in elucidating how HIV is manufactured and assembled in the cell.



The raison d’être of a virus such as HIV, if a non-living thing can be said to have one, is to turn a host cell into a factory that churns out virus copies and releases them to infect other cells. Dr. Sundquist’s research has focused on discovering the mechanisms underlying this manufacturing process.

By identifying and characterizing the structures of specific cellular proteins that are crucial to assembling HIV, Dr. Sundquist is providing potential new targets for future anti-HIV drugs. For example, he and his colleagues were the first to show that a protein called TSG101 is required for HIV release. HIV needs TSG101 in order to escape from its host cell in a process termed budding. Dr. Sundquist’s team has also determined the structure of the part of TSG101 to which HIV binds. Finding ways to alter this structure or otherwise block its binding to HIV theoretically would prevent budding and slow or halt the infection.


Sundquist is the 2003 recipient of the ASBMB-Amgen Award. Among the research strengths for which Dr. Sundquist has been lauded is his use of a wide palette of experimental techniques to determine the structures of key components in HIV assembly. By incorporating nuclear magnetic resonance imaging, cryogenic electron microscopy, genetic analysis, and other technologies into his lab, he has produced compelling findings that have made him a leader in the field of HIV research and structural biology.

Perhaps more significantly, Dr. Sundquist not only produces vivid descriptions of important molecular structures but also uses his findings to predict the potential effects of manipulating these molecules. Having identified the three-dimensional structures of two proteins, named Matrix and Capsid, which are key components of the HIV assembly line, Dr. Sundquist and his colleagues now aim to understand exactly how these proteins help assemble the virus. Their studies will guide the development of drugs that target those proteins.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>