Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The structure behind the switch

07.04.2003


USC researchers uncover mechanism of class- switching in antibodies



A team of scientists from the Keck School of Medicine of USC has, for the first time, described a new, stable DNA structure in both mouse and human cells-one which differs from the standard Watson-and-Crick double helix and plays a critical role in the production of antibodies, or immunoglobulins.
The research will be published online in the journal Nature Immunology this week, and will appear in print in the journal’s May issue.

"The way in which the five different immunoglobulin classes are created is a nearly perfect system," notes Michael Lieber, M.D., Ph.D., professor of pathology and biochemistry and the study’s principal investigator. "And yet, the DNA mechanism for how a cell switches from producing one class to producing another has remained a mystery for almost 20 years."



The typical antibody molecule is shaped like the letter Y. The region at the end of each of the two short arms houses the receptors that recognize and bind with a specific foreign object, or antigen. These receptors are created via a well-described cutting-and-splicing mechanism that occurs within the nuclear DNA of B cells, which are key components of the immune system.

The long stem, or handle, of the Y determines to which immunoglobulin class an antibody belongs. It, too, is created via a B-cell nuclear cut-and-paste job, but the mechanics here are much more complicated-and until now, much less well understood.

An immunoglobulin’s class is important because it determines where in the body the antibody’s efforts will be concentrated. While immunoglobulin M (IgM) works mostly in the bloodstream, for instance, IgG can easily slip through a capillary’s walls and cross the placenta, and IgA can make itself at home in the lungs, the digestive tract and the body’s secretions (saliva, sweat, tears).

Although antibodies are needed in all areas of the body, they all begin life as IgM, explains Kefei Yu, Ph.D., the paper’s first author and a research associate at the USC/Norris Comprehensive Cancer Center. In order to go where they’re needed, the antibodies need to change their class-to go from being IgM to being IgG or IgA or IgE or IgD.

By undergoing this so-called class switch, Lieber explains, the body can send "the same antibody missile to different areas of the body."

The switch is made by cutting the DNA so that the code for IgM and any of the other class types that might precede the desired immunoglobulin class are abolished.

What Lieber, Yu and their colleagues have found is that, in order for such a cut to be made, the DNA that codes for the desired class must first form a stable, relatively permanent bond with the RNA strand that is transcribing it. Only when this aptly named R-loop is present can the DNA be cut and spliced to create an antibody of a different immunoglobulin class.

This is not the normal process by which DNA is cut. Usually, an enzyme cuts DNA based on a particular nucleotide sequence; the sequence acts as a signal to the enzyme, pointing to the precise place the cut is to be made. But in immunoglobulin class switching, Yu explains, there is no specific signaling sequence-instead, as the Keck School scientists proved in their paper, it is the mere physical presence of the R-loop that tells the enzymes where the cut is to be made. "The protein enzyme is not recognizing a sequence, but rather an altered DNA structure," Yu says.

This is also not the normal process by which DNA is transcribed. Generally, DNA being transcribed serves as a template for the creation of a protein or enzyme. The double-stranded DNA separates, and then an RNA strand begins to pair up with each individual DNA nucleotide on one of those strands, creating a sort of mirror image of the DNA; this is the transcript. During this process, only the leading edge of the RNA remains bonded to the DNA nucleotides it’s transcribing. The rest of the RNA strand hangs off like the tail of a kite; when the RNA reaches the end of the stretch of DNA to be transcribed, the entire RNA strand drops away from the DNA and leaves the nucleus.

Not so in immunoglobulin production, says Yu. For one thing the part of the DNA that’s transcribed during immunoglobulin class switching doesn’t actually produce anything-it’s called a silent transcript. And for another, the RNA strand remains firmly attached to each and every DNA nucleotide it touches-creating a sort of permanent RNA sandwich, with the RNA between two strands of DNA, though only attached to one of them. That’s the R-loop. And it is what makes immunoglobulin class switching remarkable and unique.

"The whole process is more sophisticated than we first thought," Yu remarks.

And it may also be more illuminating than they thought. According to Yu and Lieber, the discovery of the R-loop may shed light on the development of B-cell cancers like myelomas. "We believe something may be going wrong during this class-switching recombination event that activates an oncogene," says Yu. "That is not proven yet, but it is something we will be looking at in the laboratory."

Kefei Yu, Frederic Chedin, Chih-Lin Hsieh, Thomas E. Wilson, Michael R. Lieber, "R-loops at immunoglobulin class switching regions in the chromosomes of stimulated B cells." Nature Immunology, www.nature.com/natureimmunology.


Lori Oliwenstein | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>