Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitchhiking bacteria could compromise the detection of life on Mars

04.04.2003



Is there life on Mars? It’s possible, but it may not be Martian, say scientists. New research, published in the open access journal BMC Microbiology, suggests that conditions on Mars are capable of supporting dormant bacteria, known as endospores. This raises concern about future attempts to detect Martian life forms because endospores originating on Earth could potentially hitch a ride to Mars and survive on its surface.
Soil on Mars is thought to be rich in oxidising chemicals that are known to destroy life. The high levels of ultraviolet radiation on the surface of the planet make it unlikely that any organism could survive. Ronald Crawford and colleagues from the University of Idaho have investigated whether bacterial endospores can exist in Mars’s hostile environment.

Endospores are a survival form of bacteria, formed when they find themselves in an unfavourable environment, and are perhaps the most resilient life form on Earth. They are resistant to extreme temperatures, most disinfectants, radiation, drying, and can survive for thousands of years in this dormant state. There is even evidence that they can survive in the vacuum of space. Given the possibility of endospores hitching a lift on spacecraft bound for Mars, Ronald Crawford and his colleagues investigated whether endospores could survive in a simulated Martian environment.


Martian soil was created by mixing dry sand containing endospores with ferrate. The soil was then left at –20 oC and exposed to high levels of UV light for six weeks. These conditions were designed to simulate the dry, cold, oxidizing environment found on Mars. Subsequent analysis of the soil showed that endospores were still alive below a depth of 5mm, suggesting that life is possible in these hostile conditions.

The authors speculate, “that if entities resembling bacterial endospores were produced at some point by life forms on Mars, they might still be present and viable, given appropriate germination conditions.”

Although the researchers have not found direct evidence for life on Mars their research does throw up a potential problem with future space missions. The survival of endospores in such adverse conditions raises the possibility that bacterial endospores could travel to Mars on the surface of spacecraft and survive on Martian soil. This could seriously compromise future efforts to establish whether there is, or has been life on Mars, as it would be difficult for researchers to know whether any endospores found originated from Earth or Mars.

Whilst this work establishes that bacterial endospores can survive exposure to the conditions probably found on Mars, it should be noted that it was not possible to test whether their simulated Martian environment would kill endospores over a geological timescale.

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/content/pdf/1471-2180-3-4.pdf
http://www.biomedcentral.com/info/about/pr-releases?pr=20030403

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Scientists propose new theory on Alzheimer's, amyloid connection

23.04.2019 | Life Sciences

Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect

23.04.2019 | Life Sciences

Bacteria use their enemy -- phage -- for 'self-recognition'

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>