Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a handle on sensitive cycles

01.04.2003


EMBL researchers discover a mechanism by which cells monitor estrogen



The hormone estrogen is recognized by most people because of its important role in women’s reproductive cycles. It also has other functions in the body: it drives some types of cells to replicate themselves, and it has been linked to the development of tumors. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg have now described a new model of how cells constantly monitor their exposure to estrogen. This work, which appears in the current issue of Molecular Cell, provides new insights into the way estrogen influences the activity of genes. It also suggests new ways to prevent cancer cells from dividing.

Hormones serve as one of the body’s express messenger services; they are frequently used as a signal that tells cells to change their functions or patterns of growth. Estrogen is a small molecule that passes directly into cells; once inside, it latches onto proteins called estrogen receptors that dock onto DNA. As a result, genes are activated and new proteins are produced, changing the cell’s behavior.


The body reacts to both increases and decreases in amounts of estrogen; switching a gene off can be just as important as activating one. Recent experiments have given George Reid, Michael Hübner and Raphaël Métivier in Frank Gannon’s laboratory a new view of how genes can respond to changes in either direction.

Gannon’s team has focused on estrogen receptors since they are the main intermediaries between the estrogen hormone and genes. Their latest work reveals that receptors don’t stay docked onto DNA very long; they regularly get stripped off again and dismantled. New receptors arrive to take their place. This cycle is essential to the way estrogen functions.

"It takes a two-step process for estrogen to switch on a gene," Reid says. "The hormone binds to the receptor and activates it. This complex then docks onto DNA and turns on the gene. If there is no estrogen around, ’unloaded’ receptors still attach themselves to DNA, but the gene won’t be activated. Now suppose that a lot of estrogen arrives, and that gene needs to be activated. The inactive receptor needs to be moved out of the way so that an active one can take its place."

Cells need to be equally sensitive to decreases in the amount of estrogen. This means that genes which have been switched on need to be turned off again. The mechanism is similar: a receptor (in this case, the active form) has to be stripped off the DNA.

"The first thing we discovered was a connection between gene activity, estrogen receptors and the action of intracellular molecular machines called proteasomes, which dismantle proteins," Reid says. "Jan Ellenberg’s group helped us to watch how their behavior changed under different conditions. If proteosomes are active, a receptor can move around quickly, and this puts it into position to contact the genes that respond to it. Without proteasomes, estrogen receptors are immobilized. The cycle is broken: fresh receptors don’t get onto DNA."

Under normal circumstances, however, proteasomes are around to help. The receptors dock onto DNA, and then they need to be stripped off. The Gannon group showed that inactive receptors, after binding to DNA, become loaded with another molecule called ubiquitin, which marks them for destruction by proteasomes.

"With active receptors, the end result is the same, but the sequence of events is a bit different," Reid says. "The active receptor summons other molecules to read the information in the DNA and transcribe it into RNA. After accomplishing this, they, too, become loaded with ubiquitin. Again, this leads to their removal from the gene. What we now understand is that there’s a continuous, active process that strips both types of receptors - free and estrogen-bound – off the DNA, and this is an intrinsic part of how the cell continuously senses estrogen levels."

The constant removal of receptors from genes functions like a sort of security camera that takes a fresh picture of estrogen levels in the cell at regular intervals. It guarantees that the cell can respond to changes when they occur.

"It also shows that this sensing system is dependent on the behavior of other molecular components – ubiquitins, proteasomes and all the cellular systems that control them," Reid says. "That opens up new avenues for therapies in diseases that involve estrogen. We know that the estrogen system is delicate; it’s also important, because it influences how some cells differentiate and divide. These processes go wrong in certain cancers, typically in the breast and the lining of the uterus. Our findings suggest that you might be able to stop the proliferative effects of estrogen by interfering with these other processes."

Russ Hodge | EurekAlert!
Further information:
http://www.embl-heidelberg.de/

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
11.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
11.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>