Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two brain systems tell us to breathe

31.03.2003


Until now, scientists believed that a single area in the brain generated breathing rhythm, enabling breathing to speed up or slow down to adapt to the body’s activity and position. But UCLA neurobiologists have discovered that two systems in the brain interact to generate breathing rhythm — a finding that may translate into better treatment for sleep apnea and sudden infant death syndrome. The journal Neuron reported the findings in its March 6 issue.



“We originally thought that only one brain center was responsible for generating breathing rhythm,” said Dr. Nicholas Mellen, UCLA assistant researcher in neurobiology and principal investigator of the study. “But our research indicates that two cellular networks closely collaborate to control breathing. This brings us an important step closer to understanding how breathing control is organized in the brain.”

“Breathing is a good model for understanding brain function in general,” said Dr. Jack Feldman, UCLA professor of neurobiology and senior author. “Once we learn how the brain commands humans to breathe, we will gain valuable insight into how the brain produces other meaningful behaviors.”


The UCLA finding could enhance prevention, diagnosis and treatment for sleep apnea and sudden infant death syndrome, as well as speed the development of drugs for neurological disorders that can interfere with breathing, such as stroke, multiple sclerosis and Parkinson’s disease, he added.

Previously, UCLA neurobiologists located a brain region they identified as the key command post for generating breathing and dubbed it the preBotzinger Complex. When they exposed the preBötzinger Complex nerve cells in a rat’s brain to a narcotic, the animal’s breathing slowed dramatically. This led the UCLA team to conclude that the preBotzinger Complex served as the brain’s headquarters for breathing rhythm.

“Overdoses of narcotics kill people because they slow your breathing until it stops entirely,” Feldman said. “The cells in the preBotzinger Complex replicated this phenomenon.”

Release URL, if available: The URL must point to the specific release, not a general page of releases or your organization’s main homepage.Researchers Hiroshi Onimaru and Ikuo Homma of Showa University in Tokyo, however, had described a second set of brain cells that did not respond to narcotics. They called them “pre?I” cells, for pre-inspiratory, because they are active before inhalation. The UCLA researchers decided to test the effect of a low amount of narcotics on a rat’s breathing. They first tested the drug on a slice of brainstem that did not contain pre-I neurons and then exposed the drug to a block of brainstem that did contain pre-I neurons.

When the pre-I neurons were present, the animal’s breathing slowed continuously. When the cells were absent, however, Mellen and Feldman witnessed a surprising event. Instead of slowing down gradually, the rat’s breathing pattern slowed by skipping entire breaths. This suggested that two distinct systems in the brain interact to generate breathing rhythm.

“Exposing the pre-I cells to narcotics still reduced the rat’s intake of oxygen, but it did so by skipping beats rather than slowing the rhythm,” Mellen said.

In addition to responding to narcotics differently, the two cellular networks varied in other ways, too. The UCLA team discovered that sensory feedback from the lungs affected the preBotzinger Complex brain cells, but not the pre-I cells. The scientists hypothesize that this is the brain’s way of striking a balance between stability and sensitivity.

“Humans breathe no matter what. Yet breathing is an instinctual process,” Feldman said. “We do it 24/7 from the second we’re born. The process must adapt and be sensitive to all sensory input, yet be extraordinarily stable and reliable.”

For example, the act of sitting requires 250 millileters of oxygen per minute to support resting human metabolism. The minute a person stands up and begins to walk, breathing must immediately accelerate to take in 1,000 millileters of oxygen per minute to support the activity.

“Our findings suggest that the pre-I cell system controls stability, while the preBotzinger network responds to sensory feedback,” Mellen said. “This division of labor allows breathing to quickly adapt to sensory and other input, yet rapidly return to its normal rhythm.”

“Humans and other mammals are the only vertebrate species to possess a diaphragm. This muscle played a key role in our ascending the evolutionary ladder by letting us take in more oxygen to feed our bigger brains,” Feldman said. “We think that the preBotzinger Complex also may have evolved to control the diaphragm.”

The UCLA data suggests that the preBotzinger Complex is dominant under normal circumstances, but the pre-I cell network also can give rise to the breathing rhythm. Because the two cell networks function in such an integrated manner, scientists cannot readily tease their roles apart. Only the systems’ different sensitivity to narcotics revealed their interaction.

The UCLA team will next try to unravel how the two cellular networks communicate in the brain to produce breathing.


###
The National Institute of Heart, Lung and Blood funded the research. UCLA researchers Wiktor Janczewski and Christopher Bocchiaro were co-authors on the study.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>