Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two brain systems tell us to breathe

31.03.2003


Until now, scientists believed that a single area in the brain generated breathing rhythm, enabling breathing to speed up or slow down to adapt to the body’s activity and position. But UCLA neurobiologists have discovered that two systems in the brain interact to generate breathing rhythm — a finding that may translate into better treatment for sleep apnea and sudden infant death syndrome. The journal Neuron reported the findings in its March 6 issue.



“We originally thought that only one brain center was responsible for generating breathing rhythm,” said Dr. Nicholas Mellen, UCLA assistant researcher in neurobiology and principal investigator of the study. “But our research indicates that two cellular networks closely collaborate to control breathing. This brings us an important step closer to understanding how breathing control is organized in the brain.”

“Breathing is a good model for understanding brain function in general,” said Dr. Jack Feldman, UCLA professor of neurobiology and senior author. “Once we learn how the brain commands humans to breathe, we will gain valuable insight into how the brain produces other meaningful behaviors.”


The UCLA finding could enhance prevention, diagnosis and treatment for sleep apnea and sudden infant death syndrome, as well as speed the development of drugs for neurological disorders that can interfere with breathing, such as stroke, multiple sclerosis and Parkinson’s disease, he added.

Previously, UCLA neurobiologists located a brain region they identified as the key command post for generating breathing and dubbed it the preBotzinger Complex. When they exposed the preBötzinger Complex nerve cells in a rat’s brain to a narcotic, the animal’s breathing slowed dramatically. This led the UCLA team to conclude that the preBotzinger Complex served as the brain’s headquarters for breathing rhythm.

“Overdoses of narcotics kill people because they slow your breathing until it stops entirely,” Feldman said. “The cells in the preBotzinger Complex replicated this phenomenon.”

Release URL, if available: The URL must point to the specific release, not a general page of releases or your organization’s main homepage.Researchers Hiroshi Onimaru and Ikuo Homma of Showa University in Tokyo, however, had described a second set of brain cells that did not respond to narcotics. They called them “pre?I” cells, for pre-inspiratory, because they are active before inhalation. The UCLA researchers decided to test the effect of a low amount of narcotics on a rat’s breathing. They first tested the drug on a slice of brainstem that did not contain pre-I neurons and then exposed the drug to a block of brainstem that did contain pre-I neurons.

When the pre-I neurons were present, the animal’s breathing slowed continuously. When the cells were absent, however, Mellen and Feldman witnessed a surprising event. Instead of slowing down gradually, the rat’s breathing pattern slowed by skipping entire breaths. This suggested that two distinct systems in the brain interact to generate breathing rhythm.

“Exposing the pre-I cells to narcotics still reduced the rat’s intake of oxygen, but it did so by skipping beats rather than slowing the rhythm,” Mellen said.

In addition to responding to narcotics differently, the two cellular networks varied in other ways, too. The UCLA team discovered that sensory feedback from the lungs affected the preBotzinger Complex brain cells, but not the pre-I cells. The scientists hypothesize that this is the brain’s way of striking a balance between stability and sensitivity.

“Humans breathe no matter what. Yet breathing is an instinctual process,” Feldman said. “We do it 24/7 from the second we’re born. The process must adapt and be sensitive to all sensory input, yet be extraordinarily stable and reliable.”

For example, the act of sitting requires 250 millileters of oxygen per minute to support resting human metabolism. The minute a person stands up and begins to walk, breathing must immediately accelerate to take in 1,000 millileters of oxygen per minute to support the activity.

“Our findings suggest that the pre-I cell system controls stability, while the preBotzinger network responds to sensory feedback,” Mellen said. “This division of labor allows breathing to quickly adapt to sensory and other input, yet rapidly return to its normal rhythm.”

“Humans and other mammals are the only vertebrate species to possess a diaphragm. This muscle played a key role in our ascending the evolutionary ladder by letting us take in more oxygen to feed our bigger brains,” Feldman said. “We think that the preBotzinger Complex also may have evolved to control the diaphragm.”

The UCLA data suggests that the preBotzinger Complex is dominant under normal circumstances, but the pre-I cell network also can give rise to the breathing rhythm. Because the two cell networks function in such an integrated manner, scientists cannot readily tease their roles apart. Only the systems’ different sensitivity to narcotics revealed their interaction.

The UCLA team will next try to unravel how the two cellular networks communicate in the brain to produce breathing.


###
The National Institute of Heart, Lung and Blood funded the research. UCLA researchers Wiktor Janczewski and Christopher Bocchiaro were co-authors on the study.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>