Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers develop flexible, biocompatible polymers with optical properties of hard crystalline sensors

28.03.2003


Researchers at the University of California, San Diego have discovered how to transfer the optical properties of silicon crystal sensors to plastic, an achievement that could lead to the development of flexible, implantable devices capable of monitoring the delivery of drugs within the body, the strains on a weak joint or even the healing of a suture.

The discovery is detailed in the March 28 issue of Science by a UCSD team that pioneered the development of a number of novel optical sensors from silicon wafers, the raw starting material for computer chips.

Led by Michael J. Sailor, a professor of chemistry at UCSD, the team recently developed sensors from dust-sized chips of “porous” silicon capable of detecting biological or chemical agents that might be present in a terrorist attack. It also developed a new kind of nerve gas detector based on a porous silicon chip optical sensor that changes color when it reacts to sarin and other nerve agents.



Now Sailor and his team have developed a way to transfer the optical properties of such silicon sensors, once thought to be the exclusive domain of “nanostructured” crystalline materials, such as porous silicon, to a variety of organic polymers.

“While silicon has many benefits, it has its downsides,” explains Sailor. “It’s not particularly biocompatible, it’s not flexible and it can corrode. You need something that possesses all three traits if you want to use it for medical applications. You also need something that’s corrosion resistant if you want to use it as an environmental sensor. This is a new way of making a nanostructured material with the unique optical properties of porous silicon combined with the reliability and durability of plastics.”

Besides Sailor, the researchers involved in the discovery included UCSD chemists Yang Yang Li, Frederique Cunin, Jamie Link, Ting Gao, Ronald E. Betts and Sarah Reiver; Sangeeta Bhatia, an associate professor of bioengineering at UCSD, and UCSD bioengineer Vicki Chin.

The method Sailor’s team uses to create the flexible, polymer-based sensors is something similar to the injection-molding process that manufacturers use in creating plastic toys. The scientists first start by treating a silicon wafer with an electrochemical etch to produce a porous silicon chip containing a precise array of tiny, nanometer-sized holes. This gives the chip the optical properties of a photonic crystal—a crystal with a periodic structure that can precisely control the transmission of light much as a semiconductor controls the transmission of electrons.

The scientists then cast a molten or dissolved plastic into the pores of the finished porous silicon photonic chip. The silicon chip mold is dissolved away, leaving behind a flexible, biocompatible “replica” of the porous silicon chip.

“It’s essentially a similar process to the one used in making a plastic toy from a mold,” explains Sailor. “But what’s left behind in our method is a flexible, biocompatible nanostructure with the properties of a photonic crystal.”

Those properties could allow a physician to directly see whether the biodegradable sutures used to sew up an incision have dissolved, how much strain is being placed on a newly implanted joint or how much of a drug implanted in a biodegradable polymer is being delivered to a patient.

This is possible because the properties of porous silicon allow Sailor’s team to “tune” their sensors to reflect over a wide range of wavelengths, some of which are not absorbed by human tissue. In this way, the scientists can fabricate polymers to respond to specific wavelengths that penetrate deep within the body.

A physician monitoring an implanted joint with this polymer would be able to see the changes in the reflection spectrum as the joint is stressed at different angles. A physician in need of information about the amount of a drug being delivered by an implanted device can obtain this by seeing how much the reflection spectrum of a biodegradable polymer diminishes as it and the drug dissolve into the body.

Such degradable polymers are used to deliver antiviral drugs, pain and chemotherapy medications and contraceptives.

“The drugs are released as the polymer carrier degrades, a process that can vary from patient to patient, depending on the site of implantation or the progression of a disease,” says Bhatia, who is a physician. “This approach offers a noninvasive way to monitor the degradation of the device, decide on when it needs to be replaced, and evaluate its function. This same approach would be useful for other implantable devices like evaluating the status of implantable glucose sensors diabetes or monitoring the process of tissue repair in tissue engineering.”

To demonstrate that this process would work in a medical drug delivery simulation, the researchers created a polymer sensor impregnated with caffeine. The sensor was made of polylactic acid, a polymer used in dissolvable sutures and a variety of medically implanted devices. The researchers watched as the polymer dissolved in a solution that mimicked body fluids and found that the absorption spectrum of the polymer decayed in step with the increase of caffeine in the solution.

“This confirms that the drug is released on a time scale comparable to polymer degradation,” the researchers report in the journal.

“The artificial color code embedded in the material can be read through human tissue and provides a noninvasive means of monitoring the status of the fixture,” adds Sailor. “Such polymers could be used as drug delivery materials, in which the color provides a surrogate measure of the amount of drug remaining.”

The study was supported by grants from the National Science Foundation, The David and Lucile Packard Foundation and the Air Force Office of Scientific Research.

Kim McDonald | University of California - San D
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/mcpolymer.htm

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>