Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein engineering produces ’molecular switch’

28.03.2003


In this Johns Hopkins engineering lab, Gurkan Guntas and Marc Ostermeier used a technique called domain insertion to join two proteins and create a molecular ’switch.’
Photo by Will Kirk


Technique could lead to new drug delivery systems, biological warfare sensors

Using a lab technique called domain insertion, Johns Hopkins researchers have joined two proteins in a way that creates a molecular “switch.” The result, the researchers say, is a microscopic protein partnership in which one member controls the activity of the other. Similarly coupled proteins may someday be used to produce specialized molecules that deliver lethal drugs only to cancerous cells. They also might be used to set off a warning signal when biological warfare agents are present.

The technique used to produce this molecular switch was reported March 27 in New Orleans at the 225th national meeting of the American Chemical Society,



“We’ve taken two proteins that normally have nothing to do with one another, spliced them together genetically and created a fusion protein in which the two components now ‘talk’ to one another,” said Marc Ostermeier, assistant professor in the Department of Chemical and Biomolecular Engineering at Johns Hopkins. “More important, we’ve shown that one of these partners is able to modulate or control the activity of the other. This could lead to very exciting practical applications in medical treatment and bio-sensing.”

To prove the production of a molecular switch is possible, Ostermeier, assisted by doctoral student Gurkan Guntas, started with two proteins that typically do not interact: beta-lactamase and the maltose binding protein found in a harmless form of E. coli bacteria. Each protein has a distinct activity that makes it easy to monitor. Beta-lactamase is an enzyme that can disable and degrade penicillin-like antibiotics. Maltose binding protein binds to a type of sugar called maltose that the E. coli cells can use as food.

Using a technique called domain insertion, the Johns Hopkins researchers placed beta-lactamase genes inside genes for maltose binding protein. To do this, they snipped the maltose binding genes, using enzymes that act like molecular scissors to cut the genes as though they were tiny strips of paper. A second enzyme was used to re-attach these severed strips to each side of a beta-lactamase gene, producing a single gene strip measuring approximately the combined length of the original pieces. This random cut-and-paste process took place within a test tube and created hundreds of thousands of combined genes. Because the pieces were cut and reassembled at different locations along the maltose binding gene, the combined genes produced new proteins with different characteristics.

Ostermeier believed a very small number of these new fusion proteins might possess the molecular switch behavior he was looking for. To find them, he and Guntas took a cue from the process of evolution, or “survival of the fittest.” By looking for the E. coli that thrived in maltose, they could isolate only the ones in which the maltose binding partner was still active (in other words, it still bound itself to maltose). By then mixing them with an antibiotic, the researchers could find the ones in which the beta-lactamase remained active and capable of reacting against the antibiotic. Through such survival tests, the researchers ultimately were able to find two fusion proteins in which not only were both proteins still active, but in which the presence of maltose actually caused the beta-lactamase partner to step up its attack on an antibiotic.

“In other words,” Ostermeier said, “one part of this coupled protein sent a signal, telling the other part to change its behavior. This is the first clear demonstration that you can apply the domain insertion technique to control the activity of an enzyme. If we can replicate this with other proteins, we can create biological agents that don’t exist in nature but can be very useful in important applications.”

For example, Ostermeier said, one part of a fusion protein might react only to cancer cells, signaling its partner to release a toxin to kill the diseased tissue. Healthy cells, however, would not set off the switch and would thus be left unharmed. Ostermeier also suggested that one part of a fusion protein might react to the presence of a biological warfare agent, signaling its partner to set off a bright green flourescent glow that could alert soldiers and others to the danger.

The Johns Hopkins University has applied for U.S. and international patents related to Ostermeier’s molecular switch technology and the techniques used to produce them. Ostermeier’s research has been funded by grants from the American Cancer Society and the Maryland Cigarette Restitution Fund.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.jhu.edu/news_info/news/home03/mar03/molecule.html
http://www.jhu.edu/chbe/index.asp

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>