Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sometimes no result is good result for science

28.03.2003


Sometimes finding out what doesn’t matter in science is just as important as finding what does.

That’s the case for a study that looked at the function of the viral protein, MTase1. Researchers found that the rate of virus replication in tissue culture was not affected when MTase1 was removed.

The finding is important as researchers look for what proteins are essential and how they function in cells, potentially providing answers to everything from insect control to the control of human diseases such as smallpox.



"How do viruses replicate? When there is an infection, one virus gets into one cell, and makes the cell synthesize viral proteins and viral DNA instead of what the cell needs to survive," said Dr. Linda Guarino, a Texas Agricultural Experiment Station biochemist and entomologist whose research with graduate student Xiaofeng Wu appears in this month’s Journal of Virology. "So, we want to understand how the virus manages to take over cells and force them to make more virus.

"We have to characterize the functions of individual viral proteins and how they interact with cellular proteins to understand this process," she noted.

Guarino and Wu studied MTase1 (methyltransferase) in the polyhedrosis virus of Autographa californica, a common moth species whose caterpillar feeds on alfalfa, sugar beets, tobacco and tomato crops. The insect has played an important role in research on viruses and their use as an environmentally friendly means of pest control, since the polyhedrosis virus was originally isolated from its larvae more than 30 years ago.

"MTase1 is structurally similar to a protein that poxvirus makes, and also in the poxvirus, it is non essential," Guarino said. "So, we know the virus makes proteins that are not essential when tested in a lab. However, we only studied replication in tissue culture, which is not the natural setting for replication. It might be essential in animals, so that will need to be researched as well."

She said the goal is to find out what proteins are essential, what they need to make RNA, and what their functions are.

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/BIOT/Mar2703a.htm

More articles from Life Sciences:

nachricht Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system
20.09.2019 | Technische Universität München

nachricht Moderately Common Plants Show Highest Relative Losses
20.09.2019 | Universität Rostock

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>