Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A closer look yields new clues to why bacteria stick to things

26.03.2003


A bacterium’s ability to change its hairstyle may help in the effort to clean contaminated groundwater for drinking, according to Penn State researchers.



People are continually moving into places that are hot, sunny and arid where drinking water is in short supply, says R. Kramer Campen, Penn State graduate student in geosciences. "The imperative to find ways to clean groundwater is paramount," he told attendees today (March 25) at the 225th American Chemical Society national meeting in New Orleans.

In the ocean, bacteria can be released into the water to clean up oil spills, carried to the target by the same currents that transport the oil. Groundwater poses a more difficult problem as these single-cell organisms tend to adhere to certain minerals in the soil preventing them from following the pollutant’s trail. Bacterial adhesion is also responsible for many medical problems such as tooth decay and artificial limb and organ rejection. "There is a growing awareness that you need a molecular level understanding," says Campen. "At that level, the processes that cause a bacterium to adhere to a mineral in soil or to a tooth have to be the same."


For many years, scientists have noted that bacteria stick to iron particles in soil, but not to sand grains. Until recently, this has been explained by invoking the same forces that hold a balloon to the ceiling after you rub it on your sweater. Researchers thought that the tiny, negative electrical charges on sand grains repelled the negatively charged bacteria, while the positively charged iron attracted them.

However, Campen and his adviser, James Kubicki, assistant professor of geosciences, think it is all about the hair. Bacteria are covered with atomic-scale chains of complex sugar molecules with "one end fastened into the cell membrane and the rest extending outward," explains Campen. "The hair analogy is a good one."

The hairs, actually polymers, present a problem for the charge-based explanation because the strength of the attraction (or repulsion) depends on how close the objects are to each other. Because the charges are so small, at a distance of one hair-length no attraction should be felt.

Electrical charges may still be important, just not for the reasons previously thought. Polymers come in two varieties – one with no charge and another with positive and negative charges distributed along its length. A single bacterium has both, and the aggregate is known as a polymer brush.

Campen put polymers similar to those on bacteria, both charged and uncharged, into a liquid solution with iron and sand-like particles. He discovered that both adhered to the iron, challenging the idea that electrical forces are the cause of stickiness.

The charged hairs may have another purpose. "If you’re a bacterium in a nutrient-rich environment you’d like to stick around for while," says Campen. "If you’re in a nutrient-poor environment you’d rather decrease the chances that you’ll stick to surfaces."

To accomplish this, he thinks the bacterium may rearrange the positive and negative charges along its charged polymers in such a way that they would extend, allowing the whole brush to expand, contact surfaces, and become stuck. Or, in a different arrangement the charged hairs would scrunch up, flattening the brush and allowing the bacterium to be carried away.

Developing a method to control this behavior would provide scientists with the means to send bacteria where needed, or prevent them from accumulating where they can do harm.



The National Science Foundation provided funding for this project.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>