Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA-repair protein functions differently in different organisms

25.03.2003


Researchers hope to someday develop an enzyme to repair UV-damaged DNA in humans



Plants, pond scum, and even organisms that live where the sun doesn’t shine have something that humans do not -- an enzyme that repairs DNA damaged by ultraviolet (UV) light.
Cabell Jonas of Richmond, Va., an undergraduate honors student in biology at Virginia Tech, will report on the molecular details of the DNA-repair enzyme at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans. Her poster includes the novel discovery that the enzyme does not operate the same way in different organisms.

UV light is one of the most prevalent causes of DNA damage. In humans, incidents of resulting disease -- in particular, skin cancer, are increasing as exposure to UV increases, says Sunyoung Kim, assistant professor of biochemistry at Virginia Tech. Since the human body does not have DNA photolyase, Kim and her students are studying the DNA-repair enzyme in other systems. "Our aim is to map the molecular interactions and understand the structural changes, with the eventual goal of being able to create or adapt this flavoenzyme from another organism for treatment of skin cancer in humans," says Kim.



She explains that there are two different kinds of DNA repair. One is base incision repair -- the cell machinery gears up, cuts out the damaged section of DNA, and rebuilds it. The second uses DNA photolyase. "A Lone Ranger enzyme repairs the damage without all the machinery or a lot of team players."

In two steps -- photoactivation and photo repair -- the flavoenzyme actually uses light to repair UV damage -- but from a different, visible part of the spectrum. During activation, a flavin adenine dinucleotide (FAD) molecule triggers a transfer of electrons from the flavin portion of the enzyme to the damaged DNA to carry out repair.

"We’ve discovered that, depending on which organism the enzyme comes from, the transfer of electrons through the protein is a little different," says Kim. "That is novel because it is generally assumed -- and is a basis for bioinformatics, for instance -- that the same protein doing the same job, even in different organisms, performs in the same way. But we are finding that this job of DNA repair is done by slightly different proteins in our two model organisms -- e. coli and cyanobacterium (once known as blue-green algae) -- and that the electrons take different paths to perform the repair."

The poster, "Examination of photoactivation in DNA photolyase using difference infrared spectroscopy (CHED 893)," by Jonas, graduate student Lori A. McKee of Butte, Montana, and Kim, will be presented on Monday, March 24, from 2 to 4 p.m. in Convention Center Hall J. Now a senior, Jonas has carried out research in Dr. Kim’s lab since Jonas was a sophomore. McKee received her undergraduate chemistry degree at Montana Tech.



Contact Dr. Kim at sukim1@vt.edu or (540)231-8636 or Cabell Jonas at mjonas@vt.edu(540)231-7091.
PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu


Sunyoung Kim | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>