Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA-repair protein functions differently in different organisms

25.03.2003


Researchers hope to someday develop an enzyme to repair UV-damaged DNA in humans



Plants, pond scum, and even organisms that live where the sun doesn’t shine have something that humans do not -- an enzyme that repairs DNA damaged by ultraviolet (UV) light.
Cabell Jonas of Richmond, Va., an undergraduate honors student in biology at Virginia Tech, will report on the molecular details of the DNA-repair enzyme at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans. Her poster includes the novel discovery that the enzyme does not operate the same way in different organisms.

UV light is one of the most prevalent causes of DNA damage. In humans, incidents of resulting disease -- in particular, skin cancer, are increasing as exposure to UV increases, says Sunyoung Kim, assistant professor of biochemistry at Virginia Tech. Since the human body does not have DNA photolyase, Kim and her students are studying the DNA-repair enzyme in other systems. "Our aim is to map the molecular interactions and understand the structural changes, with the eventual goal of being able to create or adapt this flavoenzyme from another organism for treatment of skin cancer in humans," says Kim.



She explains that there are two different kinds of DNA repair. One is base incision repair -- the cell machinery gears up, cuts out the damaged section of DNA, and rebuilds it. The second uses DNA photolyase. "A Lone Ranger enzyme repairs the damage without all the machinery or a lot of team players."

In two steps -- photoactivation and photo repair -- the flavoenzyme actually uses light to repair UV damage -- but from a different, visible part of the spectrum. During activation, a flavin adenine dinucleotide (FAD) molecule triggers a transfer of electrons from the flavin portion of the enzyme to the damaged DNA to carry out repair.

"We’ve discovered that, depending on which organism the enzyme comes from, the transfer of electrons through the protein is a little different," says Kim. "That is novel because it is generally assumed -- and is a basis for bioinformatics, for instance -- that the same protein doing the same job, even in different organisms, performs in the same way. But we are finding that this job of DNA repair is done by slightly different proteins in our two model organisms -- e. coli and cyanobacterium (once known as blue-green algae) -- and that the electrons take different paths to perform the repair."

The poster, "Examination of photoactivation in DNA photolyase using difference infrared spectroscopy (CHED 893)," by Jonas, graduate student Lori A. McKee of Butte, Montana, and Kim, will be presented on Monday, March 24, from 2 to 4 p.m. in Convention Center Hall J. Now a senior, Jonas has carried out research in Dr. Kim’s lab since Jonas was a sophomore. McKee received her undergraduate chemistry degree at Montana Tech.



Contact Dr. Kim at sukim1@vt.edu or (540)231-8636 or Cabell Jonas at mjonas@vt.edu(540)231-7091.
PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu


Sunyoung Kim | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>