Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel molecule may contribute to intestinal health

14.03.2003


New data suggests that a novel molecule appears to be involved in the intestine’s response to infection. The study was a collaboration between researchers at Washington University School of Medicine in St. Louis and the Institut Curie in Paris. It appears in the March 13 issue of the journal Nature.



“This is the first identified function for this molecule,” says co-senior author Susan Gilfillan, Ph.D., research instructor in pathology and immunology at the School of Medicine. “Our findings suggest that this molecule may play a fundamental role in gut immunology.”

When a virus enters the body, proteins called antigens appear on the surface of cells and alert the immune system to infection. A molecule called MR1, which was discovered eight years ago, appears to be very similar to the main category of molecules that deliver antigens to the cell surface, called major histocompatibility complex class I (MHC Class I). However, its function is not yet understood.


To learn more about MR1, Gilfillan and colleagues developed a strain of mice lacking the molecule. The mice failed to develop a small population of immune cells known as mucosal-associated invariant t cells (MAIT cells). MAIT cells were just recently discovered by the study’s other co-senior author, Olivier Lantz, Ph.D., at the Institut Curie in Paris. The current study presents the first extensive characterization of these cells.

“These results help us begin to understand the function of MR1 and the role of MAIT cells in immunology,” Gilfillan says. “Both are found not only in mice but also in humans and other animals, such as cows, which implies that they probably are very important.”

The team also discovered that MAIT cells appear to be primarily located in the mucous membrane of the intestine, or gut. Moreover, mice lacking bacteria normally found in the gut do not have MAIT cells.

From these results, Gilfillan and colleagues conclude that MAIT cells rely on both MR1 and intestinal bacteria. In addition, the results imply that MR1 and MAIT cells play a critical role in the intestine’s response to infection. The team plans to continue investigating these interactions and also to explore whether MR1 and MAIT are involved in fighting infections in other organs lined with mucous-producing cells, including the lungs.

“It’s possible that MR1 and MAIT cells are involved in a variety of diseases of the gut, particularly those relating to microorganisms that reside in the intestine,” Gilfillan says. “We also expect this line of research will be of particular interest for general mucosal immunology, and may prove useful in studying other organ systems as well.”


###
Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T (MAIT) cells by MR1. Nature, March 13, 2003.

Funding from Association de la Recherche Contre la Cander, Fondation de la recherché Medicale, INSERM and Section Medicale de l’Institut Curie supported this research.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>