Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hibernating black bears shed light on treatments for osteoporosis

05.03.2003


Unlike humans, bears seem to recover from bone loss caused by inactivity


Wild black bears may hold some secrets to preserving bone in humans.


Researchers at Penn State Milton S. Hershey Medical Center and Michigan Technological University recently studied the animal’s unique ability to rebound from significant bone loss suffered each year during hibernation. Their study, published in the March 2003 issue of Clinical Orthopedics and Related Research, shows that wild black bears have a built-in coping mechanism that ensures that yearly hibernation doesn’t leave the bears’ bones too fragile.

"In humans, disuse or immobilization as a result of bed rest or injury causes rapid bone loss, which may not be completely recoverable and can lead to weakness and fractures," said Henry J. Donahue, Ph.D., professor of orthopedics and rehabilitation, Musculoskeletal Research Laboratory, Penn State Milton S. Hershey Medical Center. "With this study, our goal was to determine how bears recover from five to seven months of hibernation each year, which can cause them significant bone loss due to disuse."



Seth Donahue, Ph.D., a former post-doctoral fellow at Penn State College of Medicine, and an assistant professor of biomedical engineering, Michigan Technological University, added, "the black bear’s mechanism of bone recovery may even provide insight into other, more common bone diseases like age-related osteoporosis and provide a rationale for the development of new pharmacological therapies." In addition to the aging and those confined to bed, bone loss is also a problem for those with spinal cord injuries and astronauts exposed to microgravity during extended space flight.

In the study, blood samples were obtained from radio-collared wild black bears during winter denning and active summer periods. Blood samples were collected at Virginia Polytechnic Institute and State University following procedures approved by the Virginia Tech Animal Care Committee. A total of 17 bears were a part of the study: seven males ages one to seven years; six females ages one to 12 years with cubs; and four females ages one to 17 years without cubs. Bears went into hibernation in December and came out in mid-April. For the sample collected during hibernation, researchers confirmed that bears had denned from one to three months.

After collection, the blood was spun in a centrifuge to attain the blood serum, the liquid portion of the blood free of red cells and clotting agents. Then, radioimmunoassays were performed to determine serum concentrations of three substances: cortisol; the carboxy-terminal cross-linked telopeptide (ICTP) – a marker of bone loss; and the carboxy-terminal propeptide of type I procollagen (PICP) – a marker of bone formation.

Higher concentrations of ICTP or PICP in the serum indicate that a bear is losing bone or forming bone, respectively. Although its role is somewhat unclear, cortisol, a naturally-occurring steroid hormone, has been shown to have a negative effect on bone density in humans. The same serum markers of bone loss and formation measured in this study already have proven useful for assessing bone status in humans with osteoporosis.

In the study of bears, results showed that ICTP and serum cortisol significantly increased during hibernation for all bears. However, PICP was not significantly different during the denning period than in the active period. Females who gave birth in the den showed relative increases in bone loss and larger decreases in bone formation than other bear groups, but the differences were not significant when compared with the other bear groups. PICP, the bone formation marker, was four- to fivefold higher in an adolescent and 17-year-old bear early in the active period compared with later in the summer months.

The data suggests that bears, like other animals, lose bone during extended periods of disuse. However, humans and other animals tend also to decrease bone formation during sedentary periods.

"These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining the same level of bone formation as when they’re active," Seth Donahue said. Because bears do not urinate or defecate during hibernation, it is likely that the calcium freed in the body due to bone loss is reused in bone formation.

With the yearly hibernation period roughly equal to the active period, and with bone formation taking longer than bone loss, how do bears maintain bone long term?

"They may be able to make more rapid and complete recoveries during remobilization than other animals," Seth Donahue said. "The bone formation marker was four- to fivefold higher in early remobilization months in two female bears.

One possible mechanism for complete recovery is that bone cells in bears are more sensitive to mechanical stimulation and circulating hormone levels during remobilization and therefore rebuild bone faster." Because the researchers were limited as to when they could collect samples, it’s unclear whether all the bears experienced elevated bone formation in the period immediately following hibernation.

"These findings lend support to the hypothesis that black bears have the ability to minimize bone loss during disuse by maintaining bone formation and completely recover lost bone by increasing bone formation during remobilization," Henry J. Donahue said.



###
This work was supported by a National Institute of Aging, National Institutes of Health, grant (R01-AG13087) awarded to Henry J. Donahue, Ph.D. Other research team members were: Michael Vaughan, Ph.D., U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Virginia Polytechnic Institute and State University; and Laurence M. Demers, Ph.D., Departments of Pathology and Medicine, Penn State College of Medicine, Penn State Hershey Medical Center.

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht In depression the brain region for stress control is larger
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation
19.09.2018 | Science China Press

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>